Abstract
This paper investigates the impacts of post-rapid thermal anneal (RTA) and thickness of ZrO2 on the polarization P and electrical characteristics of TaN/ZrO2/Ge capacitors and FeFETs, respectively. After the RTA ranging from 350 to 500 °C, TaN/ZrO2/Ge capacitors with 2.5 and 4 nm-thick amorphous ZrO2 film exhibit the stable P. It is proposed that the ferroelectric behavior originates from the migration of the voltage-driven dipoles formed by the oxygen vacancies and negative charges. FeFETs with 2.5 nm, 4 nm, and 9 nm ZrO2 demonstrate the decent memory window (MW) with 100 ns program/erase pulses. A 4-nm-thick ZrO2 FeFET has significantly improved fatigue and retention characteristics compared to devices with 2.5 nm and 9 nm ZrO2. The retention performance of the ZrO2 FeFET can be improved with the increase of the RTA temperature. An MW of ~ 0.46 V is extrapolated to be maintained over 10 years for the device with 4 nm ZrO2.
| Original language | English |
|---|---|
| Article number | 120 |
| Journal | Nanoscale Research Letters |
| Volume | 15 |
| Issue number | 1 |
| DOIs | |
| State | Published - 2020 |
Keywords
- Amorphous
- FeFET
- Germanium
- Memory
- ZrO