Wasserstein Differential Privacy

Chengyi Yang, Jiayin Qi, Aimin Zhou

Research output: Contribution to journalConference articlepeer-review

5 Scopus citations

Abstract

Differential privacy (DP) has achieved remarkable results in the field of privacy-preserving machine learning. However, existing DP frameworks do not satisfy all the conditions for becoming metrics, which prevents them from deriving better basic private properties and leads to exaggerated values on privacy budgets. We propose Wasserstein differential privacy (WDP), an alternative DP framework to measure the risk of privacy leakage, which satisfies the properties of symmetry and triangle inequality. We show and prove that WDP has 13 excellent properties, which can be theoretical supports for the better performance of WDP than other DP frameworks. In addition, we derive a general privacy accounting method called Wasserstein accountant, which enables WDP to be applied in stochastic gradient descent (SGD) scenarios containing subsampling. Experiments on basic mechanisms, compositions and deep learning show that the privacy budgets obtained by Wasserstein accountant are relatively stable and less influenced by order. Moreover, the overestimation on privacy budgets can be effectively alleviated. The code is available at https://github.com/Hifipsysta/WDP.

Original languageEnglish
Pages (from-to)16299-16307
Number of pages9
JournalProceedings of the AAAI Conference on Artificial Intelligence
Volume38
Issue number15
DOIs
StatePublished - 25 Mar 2024
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: 20 Feb 202427 Feb 2024

Fingerprint

Dive into the research topics of 'Wasserstein Differential Privacy'. Together they form a unique fingerprint.

Cite this