TY - JOUR
T1 - Variations and characteristics of carbonaceous substances emitted from a heavy fuel oil ship engine under different operating loads
AU - Zhang, Fan
AU - Chen, Yingjun
AU - Su, Penghao
AU - Cui, Min
AU - Han, Yong
AU - Matthias, Volker
AU - Wang, Gehui
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/9/1
Y1 - 2021/9/1
N2 - Heavy fuel oil (HFO) accounts for approximately 80% of the fuel consumption of ocean-going ships in the world. Multiple toxic species are found in HFO exhaust, however, carbonaceous substances emitted from low-speed marine engine exhaust at different operating loads have not been thoroughly addressed. Therefore, a bench test for a low-speed marine engine with HFO fuel under different operating modes was carried out in this study. Emission factors and characteristics of CO2, CO, organic carbon (OC), elemental carbon (EC), as well as OC and EC fragments, organic matters of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) are given and discussed. Combined with the correlation analysis results among the measured species and engine technical parameters, the formation processes and influence factors of carbonaceous components are also inferred in this study. Besides, together with OC to EC ratio, n-alkanes to PAHs ratio, etc., EC1 to soot-EC ratio in PM can be considered as tracer characteristic of high-sulfur-content HFO ship distinguished from diesel fuel ships. Profiles of n-alkanes and PAHs in PM can be used to distinguish shipping emission source from other combustion sources. Moreover, characteristics of carbonaceous components in size-segregated particles are also discussed, including OC, EC, OC and EC fragments, as well as organic matters. Results show that most of the particle mass, OC, EC, and organic matters are concentrated in fine particles with size of less than 1.1 μm, indicating the significance of ultrafine particles. Formation processes of OC and EC fragments, EC1 and soot-EC are also deduced and proved combined with the characteristics of OC and EC fragments, organic matters, and especially PAHs. Besides, the large variations of OC to EC ratios and speciated profiles of n-alkanes and PAHs in different particle size bins indicate that particle size should be considered when they are used as characteristic tracer in source apportionment studies.
AB - Heavy fuel oil (HFO) accounts for approximately 80% of the fuel consumption of ocean-going ships in the world. Multiple toxic species are found in HFO exhaust, however, carbonaceous substances emitted from low-speed marine engine exhaust at different operating loads have not been thoroughly addressed. Therefore, a bench test for a low-speed marine engine with HFO fuel under different operating modes was carried out in this study. Emission factors and characteristics of CO2, CO, organic carbon (OC), elemental carbon (EC), as well as OC and EC fragments, organic matters of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) are given and discussed. Combined with the correlation analysis results among the measured species and engine technical parameters, the formation processes and influence factors of carbonaceous components are also inferred in this study. Besides, together with OC to EC ratio, n-alkanes to PAHs ratio, etc., EC1 to soot-EC ratio in PM can be considered as tracer characteristic of high-sulfur-content HFO ship distinguished from diesel fuel ships. Profiles of n-alkanes and PAHs in PM can be used to distinguish shipping emission source from other combustion sources. Moreover, characteristics of carbonaceous components in size-segregated particles are also discussed, including OC, EC, OC and EC fragments, as well as organic matters. Results show that most of the particle mass, OC, EC, and organic matters are concentrated in fine particles with size of less than 1.1 μm, indicating the significance of ultrafine particles. Formation processes of OC and EC fragments, EC1 and soot-EC are also deduced and proved combined with the characteristics of OC and EC fragments, organic matters, and especially PAHs. Besides, the large variations of OC to EC ratios and speciated profiles of n-alkanes and PAHs in different particle size bins indicate that particle size should be considered when they are used as characteristic tracer in source apportionment studies.
KW - Carbonaceous substances
KW - Characteristics
KW - Heavy fuel oil
KW - Ship engine
KW - Size-segregated particles
UR - https://www.scopus.com/pages/publications/85106958598
U2 - 10.1016/j.envpol.2021.117388
DO - 10.1016/j.envpol.2021.117388
M3 - 文章
C2 - 34062441
AN - SCOPUS:85106958598
SN - 0269-7491
VL - 284
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 117388
ER -