TY - JOUR
T1 - Urban Flood Modeling of a Partially Separated and Combined Drainage System in the Grefsen Basin in Oslo, Norway
AU - Li, Hong
AU - Gao, Hongkai
AU - Zhou, Yanlai
AU - Storteig, Ina
AU - Nie, Linmei
AU - Sælthun, Nils Roar
AU - Xu, Chong Yu
N1 - Publisher Copyright:
© Li et al. 2022.
PY - 2022
Y1 - 2022
N2 - The Storm Water Management Model (SWMM) has been globally used for stormwater management. However, the calibration and evaluation of SWMM for historical rainfall–runoff events in partially separated and combined drainage systems is rarely reported in Norway. In this study, we employed SWMM for the Grefsen catchment in Oslo, Norway. The main problem in the Grefsen basin is combined sewer overflow. We calibrated the model parameters based on 32 rainfall–runoff events and evaluated the calibrations using four indicators: Nash–Sutcliffe efficiency, percentage bias, and continuity errors for runoff and flow. There were 32 successful calibrations using Nash–Sutcliffe efficiency, 30 successful calibrations using percentage bias, 32 successful calibrations using continuity error runoff, and four successful calibrations using continuity error flow. SWMM can well simulate the dynamics of hydrological and hydraulic systems in this catchment. Among the 124 validations, there were 88 successful simulations using Nash–Sutcliffe efficiency, 35 successful simulations using percentage bias, 124 successful simulations using continuity error for runoff, and 62 successful simulations using continuity error for flow. The results show that percentage bias and continuity error flow are the critical indicators for model calibration. This study reveals the large uncertainty caused by calibration and validation criteria, and highlights the importance of considering model computation error.
AB - The Storm Water Management Model (SWMM) has been globally used for stormwater management. However, the calibration and evaluation of SWMM for historical rainfall–runoff events in partially separated and combined drainage systems is rarely reported in Norway. In this study, we employed SWMM for the Grefsen catchment in Oslo, Norway. The main problem in the Grefsen basin is combined sewer overflow. We calibrated the model parameters based on 32 rainfall–runoff events and evaluated the calibrations using four indicators: Nash–Sutcliffe efficiency, percentage bias, and continuity errors for runoff and flow. There were 32 successful calibrations using Nash–Sutcliffe efficiency, 30 successful calibrations using percentage bias, 32 successful calibrations using continuity error runoff, and four successful calibrations using continuity error flow. SWMM can well simulate the dynamics of hydrological and hydraulic systems in this catchment. Among the 124 validations, there were 88 successful simulations using Nash–Sutcliffe efficiency, 35 successful simulations using percentage bias, 124 successful simulations using continuity error for runoff, and 62 successful simulations using continuity error for flow. The results show that percentage bias and continuity error flow are the critical indicators for model calibration. This study reveals the large uncertainty caused by calibration and validation criteria, and highlights the importance of considering model computation error.
UR - https://www.scopus.com/pages/publications/85129144725
U2 - 10.14796/JWMM.C480
DO - 10.14796/JWMM.C480
M3 - 文章
AN - SCOPUS:85129144725
SN - 2292-6062
VL - 30
JO - Journal of Water Management Modeling
JF - Journal of Water Management Modeling
M1 - C480
ER -