TY - GEN
T1 - Universal adversarial perturbation for remote sensing images
AU - Wang, Qingyu
AU - Feng, Guorui
AU - Yin, Zhaoxia
AU - Luo, Bin
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Recently, with the application of deep learning in the remote sensing image (RSI) field, the classification accuracy of the RSI has been dramatically improved compared with traditional technology. However, even the state-of-the-art object recognition convolutional neural networks are fooled by the universal adversarial perturbation (UAP). The research on UAP is mostly limited to ordinary images, and RSIs have not been studied. To explore the basic characteristics of UAPs of RSIs, this paper proposes a novel method combining an encoder-decoder network with an attention mechanism to generate the UAP of RSIs. Firstly, the former is used to generate the UAP, which can learn the distribution of perturbations better, and then the latter is used to find the sensitive regions concerned by the RSI classification model. Finally, the generated regions are used to fine-tune the perturbation making the model misclassified with fewer perturbations. The experimental results show that the UAP can make the classification model misclassify, and the attack success rate of our proposed method on the RSI data set is as high as 97.09%.
AB - Recently, with the application of deep learning in the remote sensing image (RSI) field, the classification accuracy of the RSI has been dramatically improved compared with traditional technology. However, even the state-of-the-art object recognition convolutional neural networks are fooled by the universal adversarial perturbation (UAP). The research on UAP is mostly limited to ordinary images, and RSIs have not been studied. To explore the basic characteristics of UAPs of RSIs, this paper proposes a novel method combining an encoder-decoder network with an attention mechanism to generate the UAP of RSIs. Firstly, the former is used to generate the UAP, which can learn the distribution of perturbations better, and then the latter is used to find the sensitive regions concerned by the RSI classification model. Finally, the generated regions are used to fine-tune the perturbation making the model misclassified with fewer perturbations. The experimental results show that the UAP can make the classification model misclassify, and the attack success rate of our proposed method on the RSI data set is as high as 97.09%.
KW - Remote sensing image
KW - attention mechanism
KW - deep learning
KW - encoder-decoder
KW - universal adversarial perturbation
UR - https://www.scopus.com/pages/publications/85143597296
U2 - 10.1109/MMSP55362.2022.9948869
DO - 10.1109/MMSP55362.2022.9948869
M3 - 会议稿件
AN - SCOPUS:85143597296
T3 - 2022 IEEE 24th International Workshop on Multimedia Signal Processing, MMSP 2022
BT - 2022 IEEE 24th International Workshop on Multimedia Signal Processing, MMSP 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 24th IEEE International Workshop on Multimedia Signal Processing, MMSP 2022
Y2 - 26 September 2022 through 28 September 2022
ER -