Abstract
Ferroelectric tunnel junctions, in which ferroelectric polarization and quantum tunneling are closely coupled to induce the tunneling electroresistance (TER) effect, have attracted considerable interest due to their potential in nonvolatile and low-power consumption memory devices. The ferroelectric size effect, however, has hindered ferroelectric tunnel junctions from exhibiting a robust TER effect. Here, our study proposes doping engineering in a two-dimensional in-plane ferroelectric semiconductor as an effective strategy to design a two-dimensional ferroelectric tunnel junction composed of homostructural p-type semiconductor/ferroelectric/n-type semiconductor. Because the in-plane polarization persists in the monolayer ferroelectric barrier, the vertical thickness of two-dimensional ferroelectric tunnel junction can be as thin as a monolayer. We show that the monolayer In:SnSe/SnSe/Sb:SnSe junction provides an embodiment of this strategy. Combining density functional theory calculations with nonequilibrium Green's function formalism, we investigate the electron transport properties of In:SnSe/SnSe/Sb:SnSe and reveal a giant TER effect of 1460%. The dynamical modulation of both barrier width and barrier height during the ferroelectric switching is responsible for this giant TER effect. These findings provide an important insight into the understanding of the quantum behaviors of electrons in materials at the two-dimensional limit and enable new possibilities for next-generation nonvolatile memory devices based on flexible two-dimensional lateral ferroelectric tunnel junctions.
| Original language | English |
|---|---|
| Pages (from-to) | 1133-1140 |
| Number of pages | 8 |
| Journal | ACS Applied Electronic Materials |
| Volume | 1 |
| Issue number | 7 |
| DOIs | |
| State | Published - 23 Jul 2019 |
Keywords
- 2D materials
- TER effect
- electron transport
- ferroelectrics
- memory device