Transductive non-linear learning for Chinese hypernym prediction

Chengyu Wang, Junchi Yan, Aoying Zhou, Xiaofeng He

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

23 Scopus citations

Abstract

Finding the correct hypernyms for entities is essential for taxonomy learning, fine-grained entity categorization, knowledge base construction, etc. Due to the flexibility of the Chinese language, it is challenging to identify hypernyms in Chinese accurately. Rather than extracting hypernyms from texts, in this paper, we present a transductive learning approach to establish mappings from entities to hypernyms in the embedding space directly. It combines linear and non-linear embedding projection models, with the capacity of encoding arbitrary language-specific rules. Experiments on real-world datasets illustrate that our approach outperforms previous methods for Chinese hypernym prediction.

Original languageEnglish
Title of host publicationACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
PublisherAssociation for Computational Linguistics (ACL)
Pages1394-1404
Number of pages11
ISBN (Electronic)9781945626753
DOIs
StatePublished - 2017
Event55th Annual Meeting of the Association for Computational Linguistics, ACL 2017 - Vancouver, Canada
Duration: 30 Jul 20174 Aug 2017

Publication series

NameACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
Volume1

Conference

Conference55th Annual Meeting of the Association for Computational Linguistics, ACL 2017
Country/TerritoryCanada
CityVancouver
Period30/07/174/08/17

Fingerprint

Dive into the research topics of 'Transductive non-linear learning for Chinese hypernym prediction'. Together they form a unique fingerprint.

Cite this