TY - JOUR
T1 - Transcriptome profiling reveals the antitumor mechanism of polysaccharide from marine algae Gracilariopsis lemaneiformis
AU - Kang, Yani
AU - Li, Hua
AU - Wu, Jun
AU - Xu, Xiaoting
AU - Sun, Xue
AU - Zhao, Xiaodong
AU - Xu, Nianjun
N1 - Publisher Copyright:
© 2016 Kang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/6
Y1 - 2016/6
N2 - Seaweed is one of the important biomass producers and possesses active metabolites with potential therapeutic effects against tumors. The red alga Gracilariopsis lemaneiformis (Gp. lemaneiformis) possesses antitumor activity, and the polysaccharide of Gp. lemaneiformis (PGL) has been demonstrated to be an ingredient with marked anticancer activity. However, the anticancer mechanism of PGL remains to be elucidated. In this study, we analyzed the inhibitory effect of PGL on the cell growth of 3 human cancer cell lines and found that PGL inhibited cell proliferation, reduced cell viability, and altered cell morphology in a time- and concentration-dependent manner. Our transcriptome analysis indicates that PGL can regulate the expression of 758 genes, which are involved in apoptosis, the cell cycle, nuclear division, and cell death. Furthermore, we demonstrated that PGL induced apoptosis and cell cycle arrest and modulated the expression of related genes in the A549 cell line. Our work provides a framework to understand the effects of PGL on cancer cells, and can serve as a resource for delineating the antitumor mechanisms of Gp. lemaneiformis.
AB - Seaweed is one of the important biomass producers and possesses active metabolites with potential therapeutic effects against tumors. The red alga Gracilariopsis lemaneiformis (Gp. lemaneiformis) possesses antitumor activity, and the polysaccharide of Gp. lemaneiformis (PGL) has been demonstrated to be an ingredient with marked anticancer activity. However, the anticancer mechanism of PGL remains to be elucidated. In this study, we analyzed the inhibitory effect of PGL on the cell growth of 3 human cancer cell lines and found that PGL inhibited cell proliferation, reduced cell viability, and altered cell morphology in a time- and concentration-dependent manner. Our transcriptome analysis indicates that PGL can regulate the expression of 758 genes, which are involved in apoptosis, the cell cycle, nuclear division, and cell death. Furthermore, we demonstrated that PGL induced apoptosis and cell cycle arrest and modulated the expression of related genes in the A549 cell line. Our work provides a framework to understand the effects of PGL on cancer cells, and can serve as a resource for delineating the antitumor mechanisms of Gp. lemaneiformis.
UR - https://www.scopus.com/pages/publications/84977632452
U2 - 10.1371/journal.pone.0158279
DO - 10.1371/journal.pone.0158279
M3 - 文章
C2 - 27355352
AN - SCOPUS:84977632452
SN - 1932-6203
VL - 11
JO - PLoS ONE
JF - PLoS ONE
IS - 6
M1 - e0158279
ER -