Towards Compact Single Image Super-Resolution via Contrastive Self-distillation

Yanbo Wang, Shaohui Lin, Yanyun Qu, Haiyan Wu, Zhizhong Zhang, Yuan Xie, Angela Yao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

26 Scopus citations

Abstract

Convolutional neural networks (CNNs) are highly successful for super-resolution (SR) but often require sophisticated architectures with heavy memory cost and computational overhead, significantly restricts their practical deployments on resource-limited devices. In this paper, we proposed a novel contrastive self-distillation (CSD) framework to simultaneously compress and accelerate various off-the-shelf SR models. In particular, a channel-splitting super-resolution network can first be constructed from a target teacher network as a compact student network. Then, we propose a novel contrastive loss to improve the quality of SR images and PSNR/SSIM via explicit knowledge transfer. Extensive experiments demonstrate that the proposed CSD scheme effectively compresses and accelerates several standard SR models such as EDSR, RCAN and CARN. Code is available at https://github.com/Booooooooooo/CSD.

Original languageEnglish
Title of host publicationProceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
EditorsZhi-Hua Zhou
PublisherInternational Joint Conferences on Artificial Intelligence
Pages1122-1128
Number of pages7
ISBN (Electronic)9780999241196
DOIs
StatePublished - 2021
Event30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, Canada
Duration: 19 Aug 202127 Aug 2021

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference30th International Joint Conference on Artificial Intelligence, IJCAI 2021
Country/TerritoryCanada
CityVirtual, Online
Period19/08/2127/08/21

Fingerprint

Dive into the research topics of 'Towards Compact Single Image Super-Resolution via Contrastive Self-distillation'. Together they form a unique fingerprint.

Cite this