TiRGN: Time-Guided Recurrent Graph Network with Local-Global Historical Patterns for Temporal Knowledge Graph Reasoning

Yujia Li, Shiliang Sun, Jing Zhao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

119 Scopus citations

Abstract

Temporal knowledge graphs (TKGs) have been widely used in various fields that model the dynamics of facts along the timeline. In the extrapolation setting of TKG reasoning, since facts happening in the future are entirely unknowable, insight into history is the key to predicting future facts. However, it is still a great challenge for existing models as they hardly learn the characteristics of historical events adequately. From the perspective of historical development laws, comprehensively considering the sequential, repetitive, and cyclical patterns of historical facts is conducive to predicting future facts. To this end, we propose a novel representation learning model for TKG reasoning, namely TiRGN, a time-guided recurrent graph network with local-global historical patterns. Specifically, TiRGN uses a local recurrent graph encoder network to model the historical dependency of events at adjacent timestamps and uses the global history encoder network to collect repeated historical facts. After the trade-off between the two encoders, the final inference is performed by a decoder with periodicity. We use six benchmark datasets to evaluate the proposed method. The experimental results show that TiRGN outperforms the state-of-the-art TKG reasoning methods in most cases.

Original languageEnglish
Title of host publicationProceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
EditorsLuc De Raedt, Luc De Raedt
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2152-2158
Number of pages7
ISBN (Electronic)9781956792003
DOIs
StatePublished - 2022
Event31st International Joint Conference on Artificial Intelligence, IJCAI 2022 - Vienna, Austria
Duration: 23 Jul 202229 Jul 2022

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference31st International Joint Conference on Artificial Intelligence, IJCAI 2022
Country/TerritoryAustria
CityVienna
Period23/07/2229/07/22

Fingerprint

Dive into the research topics of 'TiRGN: Time-Guided Recurrent Graph Network with Local-Global Historical Patterns for Temporal Knowledge Graph Reasoning'. Together they form a unique fingerprint.

Cite this