Three-Dimensional Porous Ti3C2Tx MXene-Graphene Hybrid Films for Glucose Biosensing

Hui Gu, Yidan Xing, Ping Xiong, Huiling Tang, Chenchen Li, Shu Chen, Rongjin Zeng, Kai Han, Guoyue Shi

Research output: Contribution to journalArticlepeer-review

160 Scopus citations

Abstract

Incorporating two-dimensional (2D) graphene sheets into a 3D graphene structure provides porous structures to bind enzyme but with low enzyme affinity and unstable structure because of removal of the surficial functional group and the flexibility of graphene sheets. To address this issue, we herein constructed a 3D porous Ti3C2Tx MXene-graphene (MG) hybrid film through a facile mixing-drying process. Ti3C2Tx MXene nanosheets (MNS) with hydrophilic groups on the rigid flakes endowed the MG hybrid film with open porous structure and a highly hydrophilic miroenvironment. By simply controlling the content of Ti3C2Tx MNS and graphene sheets, the sizes of the internal pores were accordingly tunable. The 3D porous hybrid film, fabricated from Ti3C2Tx MNS and graphene sheets (weight ratios of 1:2 abd 1:3), supplied more open structure to facilitate the glucose oxidase (GOx) entering the internal pores, which probably enhanced the stable immobilization and retaining of the GOx in the film. As a result, the as-proposed biosensor exhibited prominent electrochemical catalytic capability toward glucose biosensing, which was finally applied for glucose assay in sera. The preparation of the size-controlled 3D porous hybrid film provided a method for effectively binding enzymes/protein further to develop elegant biosensors.

Original languageEnglish
Pages (from-to)6537-6545
Number of pages9
JournalACS Applied Nano Materials
Volume2
Issue number10
DOIs
StatePublished - 25 Oct 2019

Keywords

  • 2D nanomaterial
  • 3D porous
  • TiCT MXene
  • glucose
  • glucose oxidase
  • graphene

Fingerprint

Dive into the research topics of 'Three-Dimensional Porous Ti3C2Tx MXene-Graphene Hybrid Films for Glucose Biosensing'. Together they form a unique fingerprint.

Cite this