TY - JOUR
T1 - The rapid infilling of a tide-dominated channel on the southern Yangtze Delta plain during the Medieval Climate Anomaly
AU - Wu, Zhuoxuan
AU - Wang, Jianwen
AU - Nian, Xiaomei
AU - Qiu, Fengyue
AU - Wang, Zhanghua
N1 - Publisher Copyright:
Copyright © 2025 Wu, Wang, Nian, Qiu and Wang.
PY - 2024
Y1 - 2024
N2 - The response of ports and navigation channels in tide-dominated or tide-influenced estuaries to climate warming is of significant practical relevance. However, studies utilizing sedimentary records to understand these dynamics remain limited. This study investigates the rapid siltation of the palaeo-Qinglong channel during the Song dynasty and its relationship to climate change. Three cores were drilled in the lower reaches of the palaeo-Wusong River, and surface sediment samples were collected from the Huangpu River in the southern plain of the Yangtze Delta. Using AMS 14C and optically stimulated luminescence (OSL) dating, sedimentological and alkaline earth metal analyses, this study explores the formation and silting history of the palaeo-Qinglong channel. The results indicate that the palaeo-channel was formed about 2,000 years ago as a fluvial-dominated channel but transitioned into a tide-dominated environment, as evidenced by the prevalence of muddy sediments. Rapid siltation occurred during the 11th and 12th centuries, characterized by increased Sr content and Sr/Ba ratio, which indicate intensified salinity intrusion. This rapid infilling is attributed to the increased storm frequency during the Song dynasty, which enhanced the mud import into the channel. A brief period of strengthened fluvial processes, characterized by the occurrence of sandy bedload in the sediments near Qinglong Town, likely reflects channel regulation projects undertaken along the lower reaches of the palaeo-Wusong River during the Northern Song dynasty. The findings suggest that the climate warming and relative sea-level rise during the Medieval Climate Anomaly (MCA) amplified tidal processes in the lower palaeo-Wusong River. This study provides valuable insights into fluvial-marine interactions and their implications for managing ports and navigation channels in tidally influenced estuaries.
AB - The response of ports and navigation channels in tide-dominated or tide-influenced estuaries to climate warming is of significant practical relevance. However, studies utilizing sedimentary records to understand these dynamics remain limited. This study investigates the rapid siltation of the palaeo-Qinglong channel during the Song dynasty and its relationship to climate change. Three cores were drilled in the lower reaches of the palaeo-Wusong River, and surface sediment samples were collected from the Huangpu River in the southern plain of the Yangtze Delta. Using AMS 14C and optically stimulated luminescence (OSL) dating, sedimentological and alkaline earth metal analyses, this study explores the formation and silting history of the palaeo-Qinglong channel. The results indicate that the palaeo-channel was formed about 2,000 years ago as a fluvial-dominated channel but transitioned into a tide-dominated environment, as evidenced by the prevalence of muddy sediments. Rapid siltation occurred during the 11th and 12th centuries, characterized by increased Sr content and Sr/Ba ratio, which indicate intensified salinity intrusion. This rapid infilling is attributed to the increased storm frequency during the Song dynasty, which enhanced the mud import into the channel. A brief period of strengthened fluvial processes, characterized by the occurrence of sandy bedload in the sediments near Qinglong Town, likely reflects channel regulation projects undertaken along the lower reaches of the palaeo-Wusong River during the Northern Song dynasty. The findings suggest that the climate warming and relative sea-level rise during the Medieval Climate Anomaly (MCA) amplified tidal processes in the lower palaeo-Wusong River. This study provides valuable insights into fluvial-marine interactions and their implications for managing ports and navigation channels in tidally influenced estuaries.
KW - alkaline earth metals
KW - climate warming
KW - fluvial-marine interaction
KW - salinity intrusion
KW - siltation of navigation channel
UR - https://www.scopus.com/pages/publications/85215274028
U2 - 10.3389/fmars.2024.1503297
DO - 10.3389/fmars.2024.1503297
M3 - 文章
AN - SCOPUS:85215274028
SN - 2296-7745
VL - 11
JO - Frontiers in Marine Science
JF - Frontiers in Marine Science
M1 - 1503297
ER -