The Monge–Ampère equation for (n-1)-quaternionic PSH functions on a hyperKähler manifold

Jixiang Fu, Xin Xu, Dekai Zhang

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

We prove the existence of a unique smooth solution to the quaternionic Monge–Ampère equation for (n-1)-quaternionic plurisubharmonic (psh) functions on a compact hyperKähler manifold and thus obtain solutions to the quaternionic form-type equation. We derive the C0 estimate by establishing a Cherrier-type inequality as in Tosatti and Weinkove (J Am Math Soc 30(2):311–346, 2017). By adopting the approach of Dinew and Sroka (Geom Funct Anal 33(4):875–911, 2023) to our context, we obtain the C1 and C2 estimates without assuming the flatness of underlying hyperKähler metric comparing to the previous result Gentili and Zhang (J Geom Anal 32:9, 2022).

Original languageEnglish
Article number29
JournalMathematische Zeitschrift
Volume307
Issue number2
DOIs
StatePublished - Jun 2024
Externally publishedYes

Fingerprint

Dive into the research topics of 'The Monge–Ampère equation for (n-1)-quaternionic PSH functions on a hyperKähler manifold'. Together they form a unique fingerprint.

Cite this