TY - GEN
T1 - The influence of Bi content on the properties of bismuth ferrite thin films fabricated by magnetron sputtering
AU - Yan, Hurui
AU - Ding, Nuofan
AU - Wu, Gang
AU - Yang, Pingxiong
AU - Chu, Junhao
AU - Deng, Hongmei
PY - 2013
Y1 - 2013
N2 - In the process of BiFeO3 film preparation by magnetron sputtering, Bi element is volatile, leading to the films which often appear impurity phases. Therefore, Both Bi excessive 5% (B1.05FO) and 8% (B1.08FO) BFO film in Si substrate were prepared by magnetron sputtering. X-Ray Diffraction (XRD) results showed that the BFO thin films fabricated in the Si substrate are perovskite structure, that the B1.08FO film appeared less impurity phases than B1.05FO film, and that stress due to substrate lattice mismatch caused the shift of XRD patterns. In Raman study, it was concluded that both B1.08FO film and B1.05FO film appeared ten Raman peaks in the range from 50cm-1 to 800cm-1, and that B B1.08FO Raman peaks intensity was stronger in 137.1cm-1.168.5cm-1 and 215.3cm-1. Spectroscopic ellipsometry test showed that the refractive index and the extinction coefficient of B1.05FO film were 2.25 and 0.07 respectively in 600 nm with 2.67eV of energy gap; the refractive index and the extinction coefficient of B1.08FO film were 2.14 and 0.05 in 600 nm respectively with 2.71eV of energy gap. Atomic Force Microscope (AFM) was used to characterize the film surface morphology, finding that the B1.08FO film prepared in Si substrate was denser while grain size and surface roughness were smaller.
AB - In the process of BiFeO3 film preparation by magnetron sputtering, Bi element is volatile, leading to the films which often appear impurity phases. Therefore, Both Bi excessive 5% (B1.05FO) and 8% (B1.08FO) BFO film in Si substrate were prepared by magnetron sputtering. X-Ray Diffraction (XRD) results showed that the BFO thin films fabricated in the Si substrate are perovskite structure, that the B1.08FO film appeared less impurity phases than B1.05FO film, and that stress due to substrate lattice mismatch caused the shift of XRD patterns. In Raman study, it was concluded that both B1.08FO film and B1.05FO film appeared ten Raman peaks in the range from 50cm-1 to 800cm-1, and that B B1.08FO Raman peaks intensity was stronger in 137.1cm-1.168.5cm-1 and 215.3cm-1. Spectroscopic ellipsometry test showed that the refractive index and the extinction coefficient of B1.05FO film were 2.25 and 0.07 respectively in 600 nm with 2.67eV of energy gap; the refractive index and the extinction coefficient of B1.08FO film were 2.14 and 0.05 in 600 nm respectively with 2.71eV of energy gap. Atomic Force Microscope (AFM) was used to characterize the film surface morphology, finding that the B1.08FO film prepared in Si substrate was denser while grain size and surface roughness were smaller.
KW - Magnetron sputtering
KW - Optical properties
KW - Structural characterization
UR - https://www.scopus.com/pages/publications/84875098482
U2 - 10.4028/www.scientific.net/MSF.745-746.131
DO - 10.4028/www.scientific.net/MSF.745-746.131
M3 - 会议稿件
AN - SCOPUS:84875098482
SN - 9783037856079
T3 - Materials Science Forum
SP - 131
EP - 135
BT - Advances in Functional and Electronic Materials
A2 - Wang, Lianjun
A2 - Wang, Xiumei
A2 - Yao, Kefu
A2 - Yan, Guo
PB - Trans Tech Publications Ltd
T2 - Chinese Materials Congress 2012, CMC 2012
Y2 - 13 July 2012 through 18 July 2012
ER -