TY - JOUR
T1 - The impact of climate change and human activities on streamflow and sediment load in the Pearl River basin
AU - Wu, Chuangshou
AU - Ji, Changchen
AU - Shi, Benwei
AU - Wang, Yaping
AU - Gao, Jianhua
AU - Yang, Yang
AU - Mu, Jinbin
N1 - Publisher Copyright:
© 2019 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research
PY - 2019/8
Y1 - 2019/8
N2 - This paper uses monthly streamflow, suspended sediment concentration, and meteorological data to examine the impact of human activity and climate change on streamflow and sediment load in the Pearl River basin from the 1950s to the 2000s. The influences of climate change and human activities on hydrological processes were quantitatively evaluated using the Mann–Kendall abrupt change test and power rating curves. The results showed that: (1) abrupt changes and turning points in streamflow occurred in 1963, 1983, and 1991 which were found to be consistent with global ENSO events and volcanic eruptions. However, abrupt changes in sediment load showed significant spatial differences across the Pearl River basin. For the Xijiang River, an abrupt change in sediment load occurred in 2002, and after 2007 the change becomes significant at the 95% confidence level. At Beijiang and Dongjiang, abrupt changes in sediment load occurred in 1998 and 1988, respectively. (2) The time series of sediment load data was divided into four periods according to abrupt changes. The contribution of climate change and human activities is different in the different rivers. For the Xijiang River, compared with the first period, climate change and human activities contributed 83% and 17%, respectively, to the increasing sediment load during the second period. In the third period, the variation of sediment load followed a decreasing trend. The contribution from climate change and human activities also changed to +236% and −136%, respectively. In the fourth period, climate change and human activities contributed −32% and +132%, respectively. Meanwhile, For the Beijiang River, climate change and human activities contributed 90% and 10% in the second period, the contribution of climate change increased to +115% and human activities decreased to −15% in the third period. In the fourth period, the value for climate change decreased to +36% and human activities increased to +64%. For the Dongjiang River, the contribution of human activities was from 74.5% to 90%, and the values for climate change were from 11% to 25%. Therefore, the effect of human activity showed both spatial and temporal differences, and it seems likely that the decreased sediment load will continue to be controlled mainly by human activities in the future.
AB - This paper uses monthly streamflow, suspended sediment concentration, and meteorological data to examine the impact of human activity and climate change on streamflow and sediment load in the Pearl River basin from the 1950s to the 2000s. The influences of climate change and human activities on hydrological processes were quantitatively evaluated using the Mann–Kendall abrupt change test and power rating curves. The results showed that: (1) abrupt changes and turning points in streamflow occurred in 1963, 1983, and 1991 which were found to be consistent with global ENSO events and volcanic eruptions. However, abrupt changes in sediment load showed significant spatial differences across the Pearl River basin. For the Xijiang River, an abrupt change in sediment load occurred in 2002, and after 2007 the change becomes significant at the 95% confidence level. At Beijiang and Dongjiang, abrupt changes in sediment load occurred in 1998 and 1988, respectively. (2) The time series of sediment load data was divided into four periods according to abrupt changes. The contribution of climate change and human activities is different in the different rivers. For the Xijiang River, compared with the first period, climate change and human activities contributed 83% and 17%, respectively, to the increasing sediment load during the second period. In the third period, the variation of sediment load followed a decreasing trend. The contribution from climate change and human activities also changed to +236% and −136%, respectively. In the fourth period, climate change and human activities contributed −32% and +132%, respectively. Meanwhile, For the Beijiang River, climate change and human activities contributed 90% and 10% in the second period, the contribution of climate change increased to +115% and human activities decreased to −15% in the third period. In the fourth period, the value for climate change decreased to +36% and human activities increased to +64%. For the Dongjiang River, the contribution of human activities was from 74.5% to 90%, and the values for climate change were from 11% to 25%. Therefore, the effect of human activity showed both spatial and temporal differences, and it seems likely that the decreased sediment load will continue to be controlled mainly by human activities in the future.
KW - Climate change
KW - Human activities
KW - Mann-Kendall test
KW - Pearl river
KW - Streamflow
KW - Suspended sediment concentration
UR - https://www.scopus.com/pages/publications/85062981666
U2 - 10.1016/j.ijsrc.2019.01.002
DO - 10.1016/j.ijsrc.2019.01.002
M3 - 文章
AN - SCOPUS:85062981666
SN - 1001-6279
VL - 34
SP - 307
EP - 321
JO - International Journal of Sediment Research
JF - International Journal of Sediment Research
IS - 4
ER -