TY - GEN
T1 - Test-Time Domain Generalization for Face Anti-Spoofing
AU - Zhou, Qianyu
AU - Zhang, Ke Yue
AU - Yao, Taiping
AU - Lu, Xuequan
AU - Ding, Shouhong
AU - Ma, Lizhuang
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Face Anti-Spoofing (FAS) is pivotal in safeguarding facial recognition systems against presentation attacks. While domain generalization (DG) methods have been developed to enhance FAS performance, they predominantly focus on learning domain-invariant features during training, which may not guarantee generalizability to unseen data that dif-fers largely from the source distributions. Our insight is that testing data can serve as a valuable resource to enhance the generalizability beyond mere evaluation for DG FAS. In this paper, we introduce a novel Test-Time Domain Generalization (TTDG) framework for FAS, which leverages the testing data to boost the model's generalizability. Our method, consisting of Test-Time Style Projection (TTSP) and Diverse Style Shifts Simulation (DSSS), effectively projects the unseen data to the seen domain space. In particular, we first introduce the innovative TTSP to project the styles of the arbitrarily unseen samples of the testing distribution to the known source space of the training distributions. We then design the efficient DSSS to synthesize diverse style shifts via learnable style bases with two specifically designed losses in a hyperspherical feature space. Our method elimi-nates the need for model updates at the test time and can be seamlessly integrated into not only the CNN but also ViT backbones. Comprehensive experiments on widely used cross-domain FAS benchmarks demonstrate our method's state-of-the-art performance and effectiveness.
AB - Face Anti-Spoofing (FAS) is pivotal in safeguarding facial recognition systems against presentation attacks. While domain generalization (DG) methods have been developed to enhance FAS performance, they predominantly focus on learning domain-invariant features during training, which may not guarantee generalizability to unseen data that dif-fers largely from the source distributions. Our insight is that testing data can serve as a valuable resource to enhance the generalizability beyond mere evaluation for DG FAS. In this paper, we introduce a novel Test-Time Domain Generalization (TTDG) framework for FAS, which leverages the testing data to boost the model's generalizability. Our method, consisting of Test-Time Style Projection (TTSP) and Diverse Style Shifts Simulation (DSSS), effectively projects the unseen data to the seen domain space. In particular, we first introduce the innovative TTSP to project the styles of the arbitrarily unseen samples of the testing distribution to the known source space of the training distributions. We then design the efficient DSSS to synthesize diverse style shifts via learnable style bases with two specifically designed losses in a hyperspherical feature space. Our method elimi-nates the need for model updates at the test time and can be seamlessly integrated into not only the CNN but also ViT backbones. Comprehensive experiments on widely used cross-domain FAS benchmarks demonstrate our method's state-of-the-art performance and effectiveness.
KW - Domain Generalization
KW - Face Anti-Spoofing
UR - https://www.scopus.com/pages/publications/85207292728
U2 - 10.1109/CVPR52733.2024.00025
DO - 10.1109/CVPR52733.2024.00025
M3 - 会议稿件
AN - SCOPUS:85207292728
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 175
EP - 187
BT - Proceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
PB - IEEE Computer Society
T2 - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Y2 - 16 June 2024 through 22 June 2024
ER -