Test-Time Domain Generalization for Face Anti-Spoofing

Qianyu Zhou, Ke Yue Zhang, Taiping Yao, Xuequan Lu, Shouhong Ding, Lizhuang Ma

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

31 Scopus citations

Abstract

Face Anti-Spoofing (FAS) is pivotal in safeguarding facial recognition systems against presentation attacks. While domain generalization (DG) methods have been developed to enhance FAS performance, they predominantly focus on learning domain-invariant features during training, which may not guarantee generalizability to unseen data that dif-fers largely from the source distributions. Our insight is that testing data can serve as a valuable resource to enhance the generalizability beyond mere evaluation for DG FAS. In this paper, we introduce a novel Test-Time Domain Generalization (TTDG) framework for FAS, which leverages the testing data to boost the model's generalizability. Our method, consisting of Test-Time Style Projection (TTSP) and Diverse Style Shifts Simulation (DSSS), effectively projects the unseen data to the seen domain space. In particular, we first introduce the innovative TTSP to project the styles of the arbitrarily unseen samples of the testing distribution to the known source space of the training distributions. We then design the efficient DSSS to synthesize diverse style shifts via learnable style bases with two specifically designed losses in a hyperspherical feature space. Our method elimi-nates the need for model updates at the test time and can be seamlessly integrated into not only the CNN but also ViT backbones. Comprehensive experiments on widely used cross-domain FAS benchmarks demonstrate our method's state-of-the-art performance and effectiveness.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
PublisherIEEE Computer Society
Pages175-187
Number of pages13
ISBN (Electronic)9798350353006
DOIs
StatePublished - 2024
Externally publishedYes
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States
Duration: 16 Jun 202422 Jun 2024

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Country/TerritoryUnited States
CitySeattle
Period16/06/2422/06/24

Keywords

  • Domain Generalization
  • Face Anti-Spoofing

Fingerprint

Dive into the research topics of 'Test-Time Domain Generalization for Face Anti-Spoofing'. Together they form a unique fingerprint.

Cite this