TY - GEN
T1 - Tensor-Based Multi-index Representation Learning for Major Depression Disorder Detection with Resting-State fMRI
AU - Yao, Dongren
AU - Yang, Erkun
AU - Guan, Hao
AU - Sui, Jing
AU - Zhang, Zhizhong
AU - Liu, Mingxia
N1 - Publisher Copyright:
© 2021, Springer Nature Switzerland AG.
PY - 2021
Y1 - 2021
N2 - Major depressive disorder (MDD) is a common and costly mental illness whose pathophysiology is difficult to clarify. Resting-state functional MRI (rs-fMRI) provides a non-invasive solution for the study of functional brain network abnormalities in MDD patients. Existing studies have shown that multiple indexes derived from rs-fMRI, such as fractional amplitude of low-frequency fluctuations (fALFF), voxel-mirrored homotopic connectivity (VMHC), and degree centrality (DC) help depict functional mechanisms of brain disorders from different perspectives. However, previous methods generally treat these indexes independently, without considering their potentially complementary relationship. Moreover, it is usually very challenging to effectively fuse multi-index representations for disease analysis, due to the significant heterogeneity among indexes in the feature distribution. In this paper, we propose a tensor-based multi-index representation learning (TMRL) framework for fMRI-based MDD detection. In TMRL, we first generate multi-index representations (i.e., fALFF, VMHC and DC) for each subject, followed by patch selection via group comparison for each index. We further develop a tensor-based multi-task learning model (with a tensor-based regularizer) to align multi-index representations into a common latent space, followed by MDD prediction. Experimental results on 533 subjects with rs-fMRI data demonstrate that the TMRL outperforms several state-of-the-art methods in MDD identification.
AB - Major depressive disorder (MDD) is a common and costly mental illness whose pathophysiology is difficult to clarify. Resting-state functional MRI (rs-fMRI) provides a non-invasive solution for the study of functional brain network abnormalities in MDD patients. Existing studies have shown that multiple indexes derived from rs-fMRI, such as fractional amplitude of low-frequency fluctuations (fALFF), voxel-mirrored homotopic connectivity (VMHC), and degree centrality (DC) help depict functional mechanisms of brain disorders from different perspectives. However, previous methods generally treat these indexes independently, without considering their potentially complementary relationship. Moreover, it is usually very challenging to effectively fuse multi-index representations for disease analysis, due to the significant heterogeneity among indexes in the feature distribution. In this paper, we propose a tensor-based multi-index representation learning (TMRL) framework for fMRI-based MDD detection. In TMRL, we first generate multi-index representations (i.e., fALFF, VMHC and DC) for each subject, followed by patch selection via group comparison for each index. We further develop a tensor-based multi-task learning model (with a tensor-based regularizer) to align multi-index representations into a common latent space, followed by MDD prediction. Experimental results on 533 subjects with rs-fMRI data demonstrate that the TMRL outperforms several state-of-the-art methods in MDD identification.
KW - Diagnosis
KW - Major depressive disorder
KW - rs-fMRI
UR - https://www.scopus.com/pages/publications/85116476032
U2 - 10.1007/978-3-030-87240-3_17
DO - 10.1007/978-3-030-87240-3_17
M3 - 会议稿件
AN - SCOPUS:85116476032
SN - 9783030872397
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 174
EP - 184
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
A2 - de Bruijne, Marleen
A2 - Cattin, Philippe C.
A2 - Cotin, Stéphane
A2 - Padoy, Nicolas
A2 - Speidel, Stefanie
A2 - Zheng, Yefeng
A2 - Essert, Caroline
PB - Springer Science and Business Media Deutschland GmbH
T2 - 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
Y2 - 27 September 2021 through 1 October 2021
ER -