Tensor-Based Multi-index Representation Learning for Major Depression Disorder Detection with Resting-State fMRI

Dongren Yao, Erkun Yang, Hao Guan, Jing Sui, Zhizhong Zhang, Mingxia Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Major depressive disorder (MDD) is a common and costly mental illness whose pathophysiology is difficult to clarify. Resting-state functional MRI (rs-fMRI) provides a non-invasive solution for the study of functional brain network abnormalities in MDD patients. Existing studies have shown that multiple indexes derived from rs-fMRI, such as fractional amplitude of low-frequency fluctuations (fALFF), voxel-mirrored homotopic connectivity (VMHC), and degree centrality (DC) help depict functional mechanisms of brain disorders from different perspectives. However, previous methods generally treat these indexes independently, without considering their potentially complementary relationship. Moreover, it is usually very challenging to effectively fuse multi-index representations for disease analysis, due to the significant heterogeneity among indexes in the feature distribution. In this paper, we propose a tensor-based multi-index representation learning (TMRL) framework for fMRI-based MDD detection. In TMRL, we first generate multi-index representations (i.e., fALFF, VMHC and DC) for each subject, followed by patch selection via group comparison for each index. We further develop a tensor-based multi-task learning model (with a tensor-based regularizer) to align multi-index representations into a common latent space, followed by MDD prediction. Experimental results on 533 subjects with rs-fMRI data demonstrate that the TMRL outperforms several state-of-the-art methods in MDD identification.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
EditorsMarleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert
PublisherSpringer Science and Business Media Deutschland GmbH
Pages174-184
Number of pages11
ISBN (Print)9783030872397
DOIs
StatePublished - 2021
Event24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: 27 Sep 20211 Oct 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12905 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period27/09/211/10/21

Keywords

  • Diagnosis
  • Major depressive disorder
  • rs-fMRI

Fingerprint

Dive into the research topics of 'Tensor-Based Multi-index Representation Learning for Major Depression Disorder Detection with Resting-State fMRI'. Together they form a unique fingerprint.

Cite this