TY - JOUR
T1 - Symbiotic bacteria in gills and guts of Chinese mitten crab (Eriocheir sinensis) differ from the free-living bacteria in water
AU - Zhang, Meiling
AU - Sun, Yuhong
AU - Chen, Liqiao
AU - Cai, Chunfang
AU - Qiao, Fang
AU - Du, Zhenyu
AU - Li, Erchao
N1 - Publisher Copyright:
© 2016 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Aquatic animals have a close relationship with water, but differences in their symbiotic bacteria and the bacterial composition in water remains unclear. Wild or domestic Chinese mitten crabs (Eriocheir sinensis) and the water in which they live were collected from four sampling sites in Jiangsu and Shanghai, China. Bacterial composition in water, gills or guts of E. sinensis, were compared by high-throughput sequencing using 16S rRNA genes. Analysis of >660,000 sequences indicated that bacterial diversity was higher in water than in gills or guts. Tenericutes and Proteobacteria were dominant phyla in guts, while Actinobacteria, Proteobacteria and Bacteroidetes were dominant in gills and water. Non-metric multidimensional scaling analysis indicated that microbiota from gills, guts or water clearly separated into three groups, suggesting that crabs harbor a more specific microbial community than the water in which they live. The dominant OTUs in crab gut were related to Mycoplasmataceae, which were low in abundance in gills, showing that, like mammals, crabs have body-site specific microbiota. OTUs related to Ilumatobacter and Albimonas, which are commonly present in sediment and seawater, were dominant in gills but almost absent from the sampled water. Considering E. sinensis are bottom-dwelling crustacean and they mate in saline water or seawater, behavior and life cycle of crabs may play an important role in shaping the symbiotic bacterial pattern. This study revealed the relationship between the symbiotic bacteria of Chinese mitten crab and their habitat, affording information on the assembly factors of commensal bacteria in aquatic animals.
AB - Aquatic animals have a close relationship with water, but differences in their symbiotic bacteria and the bacterial composition in water remains unclear. Wild or domestic Chinese mitten crabs (Eriocheir sinensis) and the water in which they live were collected from four sampling sites in Jiangsu and Shanghai, China. Bacterial composition in water, gills or guts of E. sinensis, were compared by high-throughput sequencing using 16S rRNA genes. Analysis of >660,000 sequences indicated that bacterial diversity was higher in water than in gills or guts. Tenericutes and Proteobacteria were dominant phyla in guts, while Actinobacteria, Proteobacteria and Bacteroidetes were dominant in gills and water. Non-metric multidimensional scaling analysis indicated that microbiota from gills, guts or water clearly separated into three groups, suggesting that crabs harbor a more specific microbial community than the water in which they live. The dominant OTUs in crab gut were related to Mycoplasmataceae, which were low in abundance in gills, showing that, like mammals, crabs have body-site specific microbiota. OTUs related to Ilumatobacter and Albimonas, which are commonly present in sediment and seawater, were dominant in gills but almost absent from the sampled water. Considering E. sinensis are bottom-dwelling crustacean and they mate in saline water or seawater, behavior and life cycle of crabs may play an important role in shaping the symbiotic bacterial pattern. This study revealed the relationship between the symbiotic bacteria of Chinese mitten crab and their habitat, affording information on the assembly factors of commensal bacteria in aquatic animals.
UR - https://www.scopus.com/pages/publications/84958191044
U2 - 10.1371/journal.pone.0148135
DO - 10.1371/journal.pone.0148135
M3 - 文章
C2 - 26820139
AN - SCOPUS:84958191044
SN - 1932-6203
VL - 11
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e0148135
ER -