Suppressing excitation effects in microwave induced thermoacoustic tomography by multi-view Hilbert transformation

Yu He, Yuecheng Shen, Changjun Liu, Lihong V. Wang

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Microwave induced thermoacoustic tomography (TAT) images usually suffer from distortions arising from the microwave polarization effect and standing wave effect. The microwave polarization effect, resulting from linearly polarized microwave illumination, splits the image of the object along the polarization direction, while the standing wave effect, when the object size is larger than the microwave wavelength within the object, modulates the image of the object. Both effects cause non-uniform energy distribution in a uniformly absorbing object and create artifacts in the reconstructed images. To address these problems in TAT, we propose an image reconstruction method that combines multi-view Hilbert transformation with the back-projection algorithm. We experimentally validate this method by imaging breast and brain tumor phantoms, showing that the aforementioned distortions are significantly suppressed. We anticipate that this method will contribute to clinical tumor diagnosis.

Original languageEnglish
Article number053701
JournalApplied Physics Letters
Volume110
Issue number5
DOIs
StatePublished - 30 Jan 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Suppressing excitation effects in microwave induced thermoacoustic tomography by multi-view Hilbert transformation'. Together they form a unique fingerprint.

Cite this