TY - GEN
T1 - Supervised reinforcement learning with recurrent neural network for dynamic treatment recommendation
AU - Wang, Lu
AU - He, Xiaofeng
AU - Zhang, Wei
AU - Zha, Hongyuan
N1 - Publisher Copyright:
© 2018 Association for Computing Machinery.
PY - 2018/7/19
Y1 - 2018/7/19
N2 - Dynamic treatment recommendation systems based on large-scale electronic health records (EHRs) become a key to successfully improve practical clinical outcomes. Prior relevant studies recommend treatments either use supervised learning (e.g. matching the indicator signal which denotes doctor prescriptions), or reinforcement learning (e.g. maximizing evaluation signal which indicates cumulative reward from survival rates). However, none of these studies have considered to combine the benefits of supervised learning and reinforcement learning. In this paper, we propose Supervised Reinforcement Learning with Recurrent Neural Network (SRL-RNN), which fuses them into a synergistic learning framework. Specifically, SRL-RNN applies an off-policy actor-critic framework to handle complex relations among multiple medications, diseases and individual characteristics. The “actor” in the framework is adjusted by both the indicator signal and evaluation signal to ensure effective prescription and low mortality. RNN is further utilized to solve the Partially-Observed Markov Decision Process (POMDP) problem due to the lack of fully observed states in real world applications. Experiments on the publicly real-world dataset, i.e., MIMIC-3, illustrate that our model can reduce the estimated mortality, while providing promising accuracy in matching doctors' prescriptions.
AB - Dynamic treatment recommendation systems based on large-scale electronic health records (EHRs) become a key to successfully improve practical clinical outcomes. Prior relevant studies recommend treatments either use supervised learning (e.g. matching the indicator signal which denotes doctor prescriptions), or reinforcement learning (e.g. maximizing evaluation signal which indicates cumulative reward from survival rates). However, none of these studies have considered to combine the benefits of supervised learning and reinforcement learning. In this paper, we propose Supervised Reinforcement Learning with Recurrent Neural Network (SRL-RNN), which fuses them into a synergistic learning framework. Specifically, SRL-RNN applies an off-policy actor-critic framework to handle complex relations among multiple medications, diseases and individual characteristics. The “actor” in the framework is adjusted by both the indicator signal and evaluation signal to ensure effective prescription and low mortality. RNN is further utilized to solve the Partially-Observed Markov Decision Process (POMDP) problem due to the lack of fully observed states in real world applications. Experiments on the publicly real-world dataset, i.e., MIMIC-3, illustrate that our model can reduce the estimated mortality, while providing promising accuracy in matching doctors' prescriptions.
KW - Deep Sequential Recommendation
KW - Dynamic Treatment Regime
KW - Supervised Reinforcement Learning
UR - https://www.scopus.com/pages/publications/85051551598
U2 - 10.1145/3219819.3219961
DO - 10.1145/3219819.3219961
M3 - 会议稿件
AN - SCOPUS:85051551598
SN - 9781450355520
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 2447
EP - 2456
BT - KDD 2018 - Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2018
Y2 - 19 August 2018 through 23 August 2018
ER -