TY - JOUR
T1 - Structural, electrical, magnetic and optical properties of BaTi1−x(Ni1/2Nb1/2)xO3 ceramics
AU - Li, Sheng
AU - Zhang, Yuanyuan
AU - Zhou, Lisa
AU - Liu, Qingqing
AU - Yang, Jing
AU - Bai, Wei
AU - Tang, Xiaodong
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2021/7
Y1 - 2021/7
N2 - In this work, we have investigated the structural, electrical, magnetic and optical properties of Ni–Nb co-doped BaTiO3 ceramics. The compositions of BaTi1−x(Ni1/2Nb1/2)xO3 (0 ≤ x ≤ 0.1) were prepared through conventional solid-state reaction method. All the samples exhibit a gradual phase transition behavior from the tetragonal to a cubic structure with the increase in the Ni–Nb co-doping concentration. SEM and EDAX characterizations show that the ceramic samples have good crystallinity and uniform doping element Ni–Nb distribution. The temperature dependence of the dielectric constant reveals that Curie temperature gradually decreased with an increase in Ni2+ and Nb5+ concentrations. The ferroelectric studies show these doping samples exhibit a decreasing ferroelectric property with the increasing level of doping. The decrease in Curie temperature and the weakening of ferroelectricity can be attributed to the transformation of the crystal structure from the tetragonal phase to the cubic phase. Magnetic measurements show that the formation of the F-center makes the sample have ferromagnetic order at room temperature. By studying the effects of different Ni–Nb doping concentrations on the ferroelectricity and ferromagnetism of BaTiO3, it was found that among all samples, when the doping concentration x = 0.08, the ceramic samples showed the best multiferroicity. Moreover, the band gap of these samples is significantly reduced due to the introduction of impurity levels. These results indicate the potential application of Ni–Nb co-doped BaTiO3 in multiferroic devices.
AB - In this work, we have investigated the structural, electrical, magnetic and optical properties of Ni–Nb co-doped BaTiO3 ceramics. The compositions of BaTi1−x(Ni1/2Nb1/2)xO3 (0 ≤ x ≤ 0.1) were prepared through conventional solid-state reaction method. All the samples exhibit a gradual phase transition behavior from the tetragonal to a cubic structure with the increase in the Ni–Nb co-doping concentration. SEM and EDAX characterizations show that the ceramic samples have good crystallinity and uniform doping element Ni–Nb distribution. The temperature dependence of the dielectric constant reveals that Curie temperature gradually decreased with an increase in Ni2+ and Nb5+ concentrations. The ferroelectric studies show these doping samples exhibit a decreasing ferroelectric property with the increasing level of doping. The decrease in Curie temperature and the weakening of ferroelectricity can be attributed to the transformation of the crystal structure from the tetragonal phase to the cubic phase. Magnetic measurements show that the formation of the F-center makes the sample have ferromagnetic order at room temperature. By studying the effects of different Ni–Nb doping concentrations on the ferroelectricity and ferromagnetism of BaTiO3, it was found that among all samples, when the doping concentration x = 0.08, the ceramic samples showed the best multiferroicity. Moreover, the band gap of these samples is significantly reduced due to the introduction of impurity levels. These results indicate the potential application of Ni–Nb co-doped BaTiO3 in multiferroic devices.
UR - https://www.scopus.com/pages/publications/85108957984
U2 - 10.1007/s10854-021-06470-9
DO - 10.1007/s10854-021-06470-9
M3 - 文章
AN - SCOPUS:85108957984
SN - 0957-4522
VL - 32
SP - 19519
EP - 19528
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 14
ER -