TY - JOUR
T1 - Stick-Breaking Dependent Beta Processes with Variational Inference
AU - Cao, Zehui
AU - Zhao, Jing
AU - Sun, Shiliang
N1 - Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2021/2
Y1 - 2021/2
N2 - The beta processes (BP) is a powerful nonparametric tool in feature learning, which is often used as the prior of Bernoulli process for choosing features from a feature dictionary. However, it still shows a limitation in processing some real-world data, as the stood and BP is independent of data. In practice, the probabilities of selecting features in the latent space for different observed data are different, and they are usually dependent on some information from data, such as the location or time information. For example, data with closer distances usually have similar features. This kind of information (location or time) often called covariates, which are ignored in most BP-related literature. To account this problem, we propose a variational inference based dependent beta processes (VDBP), in which the dependent beta process is constructed using the stick-breaking representation and the dependency on the covariates is captured by a Gaussian process prior. An elegant representation of variational inference for with VDBP prior is obtained, which offers the efficient training method for the models using VDBP as priors. Through instantiating a Bayesian factor analysis model with VDBP, we verify the effectiveness of the proposed VDBP in image denoising and image inpainting tasks.
AB - The beta processes (BP) is a powerful nonparametric tool in feature learning, which is often used as the prior of Bernoulli process for choosing features from a feature dictionary. However, it still shows a limitation in processing some real-world data, as the stood and BP is independent of data. In practice, the probabilities of selecting features in the latent space for different observed data are different, and they are usually dependent on some information from data, such as the location or time information. For example, data with closer distances usually have similar features. This kind of information (location or time) often called covariates, which are ignored in most BP-related literature. To account this problem, we propose a variational inference based dependent beta processes (VDBP), in which the dependent beta process is constructed using the stick-breaking representation and the dependency on the covariates is captured by a Gaussian process prior. An elegant representation of variational inference for with VDBP prior is obtained, which offers the efficient training method for the models using VDBP as priors. Through instantiating a Bayesian factor analysis model with VDBP, we verify the effectiveness of the proposed VDBP in image denoising and image inpainting tasks.
KW - Beta process
KW - Dependent beta process
KW - Image processing
KW - Variational inference
UR - https://www.scopus.com/pages/publications/85096874905
U2 - 10.1007/s11063-020-10392-8
DO - 10.1007/s11063-020-10392-8
M3 - 文章
AN - SCOPUS:85096874905
SN - 1370-4621
VL - 53
SP - 339
EP - 353
JO - Neural Processing Letters
JF - Neural Processing Letters
IS - 1
ER -