TY - JOUR
T1 - SpecTr
T2 - Spectral Transformer for Microscopic Hyperspectral Pathology Image Segmentation
AU - Yun, Boxiang
AU - Lei, Baiying
AU - Chen, Jieneng
AU - Wang, Huiyu
AU - Qiu, Song
AU - Shen, Wei
AU - Li, Qingli
AU - Wang, Yan
N1 - Publisher Copyright:
© 1991-2012 IEEE.
PY - 2024/6/1
Y1 - 2024/6/1
N2 - Hyperspectral imaging (HSI) unlocks the huge potential to a wide variety of applications relying on high-precision pathology image segmentation, such as computational pathology. It can acquire biochemical properties even invisible to naked eyes from histological specimens. Since 1) spectra contain discriminative and continuous patterns for differentiating tissues/cells, and 2) the discriminability of spectra relies on both fine-grained relations in the high-resolution spectrum and coarse relations in the low-resolution spectrum, the key to achieving high-precision hyperspectral pathology image segmentation is to felicitously model the intra- and inter-scale context especially for spectra. In this paper, we propose a spectral transformer (SpecTr) for hyperspectral pathology image segmentation, which first captures global context for intra-scale spectral features, and subsequently extract coarse and fine-grained discriminative spectral information from inter-scale features, respectively. To learn intra-scale spectral context, we propose a Spectral Attentive Module (SAM). Unlike the existing Transformer model that is designed for modalities such as natural images, our proposed SAM is efficient in capturing sparse and pivotal spectral context while avoiding the heterogeneous underlying distributions and noises of different bands. Besides, to reduce the computational complexity of the HSI segmentation model, we further propose a global-local attention module to effectively learn a condensed spectral feature. Experiments show that HSIs can become a more powerful image modality for understanding microscopic pathology images than RGB images, and the proposed SpecTr outperforms other competing methods for hyperspectral pathology image segmentation, with an improvement of 3% compared with the popular 3D-nnUNet and other transformer-based methods. Our code is available at https://github.com/DeepMed-Lab-ECNU/SpecTr.
AB - Hyperspectral imaging (HSI) unlocks the huge potential to a wide variety of applications relying on high-precision pathology image segmentation, such as computational pathology. It can acquire biochemical properties even invisible to naked eyes from histological specimens. Since 1) spectra contain discriminative and continuous patterns for differentiating tissues/cells, and 2) the discriminability of spectra relies on both fine-grained relations in the high-resolution spectrum and coarse relations in the low-resolution spectrum, the key to achieving high-precision hyperspectral pathology image segmentation is to felicitously model the intra- and inter-scale context especially for spectra. In this paper, we propose a spectral transformer (SpecTr) for hyperspectral pathology image segmentation, which first captures global context for intra-scale spectral features, and subsequently extract coarse and fine-grained discriminative spectral information from inter-scale features, respectively. To learn intra-scale spectral context, we propose a Spectral Attentive Module (SAM). Unlike the existing Transformer model that is designed for modalities such as natural images, our proposed SAM is efficient in capturing sparse and pivotal spectral context while avoiding the heterogeneous underlying distributions and noises of different bands. Besides, to reduce the computational complexity of the HSI segmentation model, we further propose a global-local attention module to effectively learn a condensed spectral feature. Experiments show that HSIs can become a more powerful image modality for understanding microscopic pathology images than RGB images, and the proposed SpecTr outperforms other competing methods for hyperspectral pathology image segmentation, with an improvement of 3% compared with the popular 3D-nnUNet and other transformer-based methods. Our code is available at https://github.com/DeepMed-Lab-ECNU/SpecTr.
KW - Hyperspectral pathology image
KW - medical image segmentation
KW - microscopy
KW - optical imaging
KW - transformer
UR - https://www.scopus.com/pages/publications/85174798476
U2 - 10.1109/TCSVT.2023.3326196
DO - 10.1109/TCSVT.2023.3326196
M3 - 文章
AN - SCOPUS:85174798476
SN - 1051-8215
VL - 34
SP - 4610
EP - 4624
JO - IEEE Transactions on Circuits and Systems for Video Technology
JF - IEEE Transactions on Circuits and Systems for Video Technology
IS - 6
ER -