TY - JOUR
T1 - Spatio-Temporal Variations in the Abundance and Community Structure of Nitrospira in a Tropical Bay
AU - Mao, Tie Qiang
AU - Li, Yan Qun
AU - Dong, Hong Po
AU - Yang, Wen Na
AU - Hou, Li Jun
N1 - Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/11/1
Y1 - 2020/11/1
N2 - Nitrospira is the most diverse genus of nitrite-oxidizing bacteria, and its members are widely spread in various natural and engineered ecosystems. In this study, the phylogenetic diversity of Nitrospira and monthly changes of its abundance from Zhanjiang Bay were investigated. Phylogenetic analysis showed that among 58 OTUs with high abundance, 74% were not affiliated with any previously described Nitrospira species, revealing a previously unrecognized diversity of coastal Nitrospira. The abundances of both Nitrospira and Nitrospina exhibited a significantly monthly change. During most of the months, abundance of Nitrospina was greater than that of Nitrospira. In particle-attached communities, either abundance of Nitrospina or Nitrospira was highly correlated with that of ammonia-oxidizing archaea (AOA), whereas abundance of ammonia-oxidizing bacteria was only highly correlated with that of Nitrospina. In free-living communities, either abundance of Nitrospina or Nitrospira was correlated only with that of AOA. These results suggest that both Nitrospira and Nitrospina can be involved in nitrite oxidation by coupling with AOA, but Nitrospina may play a greater role than Nitrospira in this tropical bay.
AB - Nitrospira is the most diverse genus of nitrite-oxidizing bacteria, and its members are widely spread in various natural and engineered ecosystems. In this study, the phylogenetic diversity of Nitrospira and monthly changes of its abundance from Zhanjiang Bay were investigated. Phylogenetic analysis showed that among 58 OTUs with high abundance, 74% were not affiliated with any previously described Nitrospira species, revealing a previously unrecognized diversity of coastal Nitrospira. The abundances of both Nitrospira and Nitrospina exhibited a significantly monthly change. During most of the months, abundance of Nitrospina was greater than that of Nitrospira. In particle-attached communities, either abundance of Nitrospina or Nitrospira was highly correlated with that of ammonia-oxidizing archaea (AOA), whereas abundance of ammonia-oxidizing bacteria was only highly correlated with that of Nitrospina. In free-living communities, either abundance of Nitrospina or Nitrospira was correlated only with that of AOA. These results suggest that both Nitrospira and Nitrospina can be involved in nitrite oxidation by coupling with AOA, but Nitrospina may play a greater role than Nitrospira in this tropical bay.
UR - https://www.scopus.com/pages/publications/85090948395
U2 - 10.1007/s00284-020-02193-y
DO - 10.1007/s00284-020-02193-y
M3 - 文章
C2 - 32929577
AN - SCOPUS:85090948395
SN - 0343-8651
VL - 77
SP - 3492
EP - 3503
JO - Current Microbiology
JF - Current Microbiology
IS - 11
ER -