Abstract
Research into pixel unmixing in remote sensing imagery led to the development of soft classification methods. In this article, we propose a possibilistic c repulsive medoids (PCRMdd) clustering algorithm which attempts to find c repulsive medoids as a minimal solution of a particular objective function. The PCRMdd algorithm is applied to predict the proportion of each land use class within a single pixel, and generate a set of endmember fraction images. The clustering results obtained on multi-temporal Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images of Shanghai city in China reveal the spatio-temporal pattern of Shanghai land use evolvement and urban land spatial sprawl in course of urbanization from 1989 to 2002. The spatial pattern of land use transformation with urban renewal and expansion indicates the urban land use structure is gradually optimized during vigorous urban renewal and large-scale development of Pudong area, which will have an active influence on improving urban space landscape and enhancing the quality of the ecological environment. In addition, accuracy analysis demonstrates that PCRMdd represents a robust and effective tool for mixed-pixel classification on remote sensing imagery to obtain reliable soft classification results and endmember spectral information in a noisy environment.
| Original language | English |
|---|---|
| Pages (from-to) | 6095-6114 |
| Number of pages | 20 |
| Journal | International Journal of Remote Sensing |
| Volume | 31 |
| Issue number | 23 |
| DOIs | |
| State | Published - Jul 2010 |