TY - JOUR
T1 - Spatial characteristics of change trends of air pollutants in Chinese urban areas during 2016–2020
T2 - The impact of air pollution controls and the COVID-19 pandemic
AU - Gao, Chanchan
AU - Zhang, Fengying
AU - Fang, Dekun
AU - Wang, Qingtao
AU - Liu, Min
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - Air pollution is a threat to public health in China, and several actions and plans have been implemented by Chinese authorities in recent years to mitigate it. This study examined the spatial distribution of changes in urban air pollutants (UAP) in 336 Chinese cities from 2016 to 2020 and their responses to air pollution controls and the COVID-19 pandemic. Based on the harmonic model, decreases in fine particles (PM2.5), inhalable particles (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) levels were found in 90.7%, 91.9%, 75.2%, 94.3%, and 88.7% of cities, respectively, while an increase in ozone (O3) was found in 87.2% of cities. Notable spatial heterogeneity was observed in the air pollution trends. The greatest improvement in air quality occurred mainly in areas with poor air quality, such as Hebei province and its surrounding cities. However, some areas (i.e., Yunnan and Hainan provinces) with good air quality showed a worsening trend. During the 13th Five-Year Plan period (2016–2020), the remarkable effects of PM2.5 and SO2 pollution control plans were confirmed. Additionally, economic growth in 74.2% of the Chinese provinces decoupled from air quality after implementing pollution control measures. In 2020, several Chinese cities were locked down to reduce the spread of COVID-19. Except for SO2, the national air pollution in 2020 improved to a greater extent than that in 2016–2019; In particularly, the contribution of simulated COVID-19 pandemic to NO2 reduction was 66.7%. Overall, air pollution control actions improved urban PM2.5, PM10, SO2, and CO, whereas NO2 was reduced primarily because of the COVID-19 pandemic.
AB - Air pollution is a threat to public health in China, and several actions and plans have been implemented by Chinese authorities in recent years to mitigate it. This study examined the spatial distribution of changes in urban air pollutants (UAP) in 336 Chinese cities from 2016 to 2020 and their responses to air pollution controls and the COVID-19 pandemic. Based on the harmonic model, decreases in fine particles (PM2.5), inhalable particles (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) levels were found in 90.7%, 91.9%, 75.2%, 94.3%, and 88.7% of cities, respectively, while an increase in ozone (O3) was found in 87.2% of cities. Notable spatial heterogeneity was observed in the air pollution trends. The greatest improvement in air quality occurred mainly in areas with poor air quality, such as Hebei province and its surrounding cities. However, some areas (i.e., Yunnan and Hainan provinces) with good air quality showed a worsening trend. During the 13th Five-Year Plan period (2016–2020), the remarkable effects of PM2.5 and SO2 pollution control plans were confirmed. Additionally, economic growth in 74.2% of the Chinese provinces decoupled from air quality after implementing pollution control measures. In 2020, several Chinese cities were locked down to reduce the spread of COVID-19. Except for SO2, the national air pollution in 2020 improved to a greater extent than that in 2016–2019; In particularly, the contribution of simulated COVID-19 pandemic to NO2 reduction was 66.7%. Overall, air pollution control actions improved urban PM2.5, PM10, SO2, and CO, whereas NO2 was reduced primarily because of the COVID-19 pandemic.
KW - Air pollution controls
KW - Air quality
KW - COVID-19
KW - China
KW - harmonic model
UR - https://www.scopus.com/pages/publications/85144089438
U2 - 10.1016/j.atmosres.2022.106539
DO - 10.1016/j.atmosres.2022.106539
M3 - 文章
AN - SCOPUS:85144089438
SN - 0169-8095
VL - 283
JO - Atmospheric Research
JF - Atmospheric Research
M1 - 106539
ER -