TY - JOUR
T1 - Sources and preservation dynamics of organic matter in surface sediments of Narmada River, India – Illustrated by amino acids
AU - Fernandes, Dearlyn
AU - Wu, Ying
AU - Shirodkar, Prabhaker Vasant
AU - Pradhan, Umesh Kumar
AU - Zhang, Jing
AU - Limbu, Samwel Mchele
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/1
Y1 - 2020/1
N2 - The preservation process of organic matter (OM) in estuarine environments determines the recycling and sinking of nutrients. This process requires the identification of sources, degradation states and the main processes affecting OM transformations. Unfortunately, our understandingof the sources, degradation and factors affecting OM distribution in tropical rivers experiencing strong seasonality and monsoonal influence is still limited. This study examined the sources, degradation and factors affecting OM distribution along the Narmada River and its estuary during different seasons. Surface waters and sediments were analyzed seasonally for selected physico-chemical parameters and bulk compositions of sediments, together with amino acids (AA, including the bacterial biomarker, D-AA). The sources of OM were soils containing detrital terrestrial plant material, with C4 and C3 plants dominating the estuarine and riverine stations, respectively. The other sources of OM were in-situ production, together with bacteria and their remnants. Strong seasonality and monsoonal conditions control the sources and distribution of OM in the river. Higher concentrations of total hydrolysable amino acids (THAA) were observed in riverine stations, suggesting the presence of relatively fresher OM. The lower OC:SA ratios recorded in the estuarine sediments indicated a limited OM preservation in the studied river. Positive degradation index (DI) values were obtained during the pre-monsoon season, suggesting seasonal changes in OM diagenesis. Physical (strong tidal currents, rainfall, reduced water flow due to seasonal variations and shallow water depth within the estuary) and geochemical (mineral surface adsorption processes) factors control the distribution and transport of OM. Taken together, the sources, preservation and diagenesis of terrestrial OM along the Narmada River was controlled differentially by the strong seasonal variability of the region. Thus, under variable temporal conditions, tropical estuaries and rivers form important realms for examining, determining, evaluating and assessing OM in order to better interpret nutrient budgets of the seas and oceans.
AB - The preservation process of organic matter (OM) in estuarine environments determines the recycling and sinking of nutrients. This process requires the identification of sources, degradation states and the main processes affecting OM transformations. Unfortunately, our understandingof the sources, degradation and factors affecting OM distribution in tropical rivers experiencing strong seasonality and monsoonal influence is still limited. This study examined the sources, degradation and factors affecting OM distribution along the Narmada River and its estuary during different seasons. Surface waters and sediments were analyzed seasonally for selected physico-chemical parameters and bulk compositions of sediments, together with amino acids (AA, including the bacterial biomarker, D-AA). The sources of OM were soils containing detrital terrestrial plant material, with C4 and C3 plants dominating the estuarine and riverine stations, respectively. The other sources of OM were in-situ production, together with bacteria and their remnants. Strong seasonality and monsoonal conditions control the sources and distribution of OM in the river. Higher concentrations of total hydrolysable amino acids (THAA) were observed in riverine stations, suggesting the presence of relatively fresher OM. The lower OC:SA ratios recorded in the estuarine sediments indicated a limited OM preservation in the studied river. Positive degradation index (DI) values were obtained during the pre-monsoon season, suggesting seasonal changes in OM diagenesis. Physical (strong tidal currents, rainfall, reduced water flow due to seasonal variations and shallow water depth within the estuary) and geochemical (mineral surface adsorption processes) factors control the distribution and transport of OM. Taken together, the sources, preservation and diagenesis of terrestrial OM along the Narmada River was controlled differentially by the strong seasonal variability of the region. Thus, under variable temporal conditions, tropical estuaries and rivers form important realms for examining, determining, evaluating and assessing OM in order to better interpret nutrient budgets of the seas and oceans.
KW - Amino acids (AA)
KW - Degradation index (DI)
KW - Narmada River
KW - Organic matter (OM)
KW - Sediment
KW - Surface area (SA)
UR - https://www.scopus.com/pages/publications/85074701797
U2 - 10.1016/j.jmarsys.2019.103239
DO - 10.1016/j.jmarsys.2019.103239
M3 - 文章
AN - SCOPUS:85074701797
SN - 0924-7963
VL - 201
JO - Journal of Marine Systems
JF - Journal of Marine Systems
M1 - 103239
ER -