TY - JOUR
T1 - Soil minerals and organic matters affect ARGs transformation by changing the morphology of plasmid and bacterial responses
AU - Shi, Hongyu
AU - Hu, Xinyi
AU - Zhang, Jin
AU - Li, Wenxuan
AU - Xu, Jiang
AU - Hu, Baolan
AU - Ma, Liping
AU - Lou, Liping
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/9/5
Y1 - 2023/9/5
N2 - Soil environment is a vital place for the occurrence and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Extracellular DNA-mediated transformation is an important pathway for ARGs horizontal transfer and widely exists in soil environment. However, little information is available on how common soil components affect ARGs transformation. Here, three minerals (quartz, kaolinite, and montmorillonite) and three organic matters (humic acid, biochar, and soot) were selected as typical soil components. A small amount in suspension (0.2 g/L) of most soil components (except for quartz and montmorillonite) promoted transformant production by 1.1–1.6 folds. For a high amount (8 g/L), biochar significantly promoted transformant production to 1.5 times, kaolinite exerted a 30 % inhibitory effect. From the perspective of plasmid, biochar induced a higher proportion of supercoiled plasmid than kaolinite; more dissolved organic matter and metal ions facilitated plasmid aggregation under the near-neutral pH, thus promoted transformation. As for the influence of materials on recipient, although biochar and kaolinite both increased reactive oxygen species (ROS) level and membrane permeability, biochar up-regulated more ROS related genes, resulting in intracellular ROS production and up-regulating the expression of carbohydrate metabolism and transformation related genes. While kaolinite inhibited transformation mainly by causing nutrient deficiency.
AB - Soil environment is a vital place for the occurrence and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Extracellular DNA-mediated transformation is an important pathway for ARGs horizontal transfer and widely exists in soil environment. However, little information is available on how common soil components affect ARGs transformation. Here, three minerals (quartz, kaolinite, and montmorillonite) and three organic matters (humic acid, biochar, and soot) were selected as typical soil components. A small amount in suspension (0.2 g/L) of most soil components (except for quartz and montmorillonite) promoted transformant production by 1.1–1.6 folds. For a high amount (8 g/L), biochar significantly promoted transformant production to 1.5 times, kaolinite exerted a 30 % inhibitory effect. From the perspective of plasmid, biochar induced a higher proportion of supercoiled plasmid than kaolinite; more dissolved organic matter and metal ions facilitated plasmid aggregation under the near-neutral pH, thus promoted transformation. As for the influence of materials on recipient, although biochar and kaolinite both increased reactive oxygen species (ROS) level and membrane permeability, biochar up-regulated more ROS related genes, resulting in intracellular ROS production and up-regulating the expression of carbohydrate metabolism and transformation related genes. While kaolinite inhibited transformation mainly by causing nutrient deficiency.
KW - Antibiotic resistance genes
KW - Biochar
KW - Kaolinite
KW - Soil components
KW - Transformation
UR - https://www.scopus.com/pages/publications/85160360775
U2 - 10.1016/j.jhazmat.2023.131727
DO - 10.1016/j.jhazmat.2023.131727
M3 - 文章
C2 - 37257383
AN - SCOPUS:85160360775
SN - 0304-3894
VL - 457
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 131727
ER -