TY - JOUR
T1 - Single-cell RNA-seq technologies and related computational data analysis
AU - Chen, Geng
AU - Ning, Baitang
AU - Shi, Tieliu
N1 - Publisher Copyright:
Copyright © 2019 Chen, Ning and Shi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
PY - 2019
Y1 - 2019
N2 - Single-cell RNA sequencing (scRNA-seq) technologies allow the dissection of gene expression at single-cell resolution, which greatly revolutionizes transcriptomic studies. A number of scRNA-seq protocols have been developed, and these methods possess their unique features with distinct advantages and disadvantages. Due to technical limitations and biological factors, scRNA-seq data are noisier and more complex than bulk RNA-seq data. The high variability of scRNA-seq data raises computational challenges in data analysis. Although an increasing number of bioinformatics methods are proposed for analyzing and interpreting scRNA-seq data, novel algorithms are required to ensure the accuracy and reproducibility of results. In this review, we provide an overview of currently available single-cell isolation protocols and scRNA-seq technologies, and discuss the methods for diverse scRNA-seq data analyses including quality control, read mapping, gene expression quantification, batch effect correction, normalization, imputation, dimensionality reduction, feature selection, cell clustering, trajectory inference, differential expression calling, alternative splicing, allelic expression, and gene regulatory network reconstruction. Further, we outline the prospective development and applications of scRNA-seq technologies.
AB - Single-cell RNA sequencing (scRNA-seq) technologies allow the dissection of gene expression at single-cell resolution, which greatly revolutionizes transcriptomic studies. A number of scRNA-seq protocols have been developed, and these methods possess their unique features with distinct advantages and disadvantages. Due to technical limitations and biological factors, scRNA-seq data are noisier and more complex than bulk RNA-seq data. The high variability of scRNA-seq data raises computational challenges in data analysis. Although an increasing number of bioinformatics methods are proposed for analyzing and interpreting scRNA-seq data, novel algorithms are required to ensure the accuracy and reproducibility of results. In this review, we provide an overview of currently available single-cell isolation protocols and scRNA-seq technologies, and discuss the methods for diverse scRNA-seq data analyses including quality control, read mapping, gene expression quantification, batch effect correction, normalization, imputation, dimensionality reduction, feature selection, cell clustering, trajectory inference, differential expression calling, alternative splicing, allelic expression, and gene regulatory network reconstruction. Further, we outline the prospective development and applications of scRNA-seq technologies.
KW - Allelic expression
KW - Alternative splicing
KW - Cell clustering
KW - Cell trajectory
KW - Single-cell RNA-seq
UR - https://www.scopus.com/pages/publications/85067859585
U2 - 10.3389/fgene.2019.00317
DO - 10.3389/fgene.2019.00317
M3 - 文献综述
AN - SCOPUS:85067859585
SN - 1664-8021
VL - 10
JO - Frontiers in Genetics
JF - Frontiers in Genetics
IS - APR
M1 - 317
ER -