Abstract
Efficient removal of recalcitrant Cr(III)-organic complexes is always challenged by slow decomplexation process and the possible accumulation of highly toxic Cr(VI). Herein, a sulfidated zero-valent iron coupled ozonation strategy (S-ZVI/O3) was proposed to achieve efficient decomplexation and simultaneous abatement of Cr(III)-EDTA without Cr(VI) accumulation. Results revealed that S-ZVI could catalyze O3 to enhance removal of Cr(III)-EDTA and total organic carbon. Moreover, 88.3 % of total Cr was sequestrated by S-ZVI/O3 and the corresponding kinetic constant was 3.1 times higher than that of ZVI/O3. Mechanistically, electron paramagnetic resonance and probing tests verified HO• was the dominant reactive oxidation species for decomplexation of Cr(III)-EDTA in both S-ZVI/O3 and ZVI/O3. More attractively, it was found that structural Fe(II) was the major O3 activator in S-ZVI/O3, whereas dissolved Fe2+ accounted for O3 catalyzation in ZVI/O3. The X-ray absorption spectroscopy analysis revealed that sulfidation treatment could enhance corrosion of ZVI with the formation of sufficient Fe(II) species. The in-situ formed Fe(II) could not only transform undesired Cr(VI) back to Cr(III) but also co-precipitate with Cr(III) to form solid Fe-Cr hydroxides. Besides Cr(III)-EDTA, S-ZVI/O3 is also applicable to other EDTA complexed heavy metals. This work would provide a new method for the heavy metal complexes removal from water.
| Original language | English |
|---|---|
| Article number | 138032 |
| Journal | Journal of Hazardous Materials |
| Volume | 492 |
| DOIs | |
| State | Published - 15 Jul 2025 |
Keywords
- Decomplexation
- Heavy metal complexes
- Ozonation
- Sulfidation
- Zero-valent iron