Abstract
Tapered metallic nanostructures that harbor surface plasmons are highly interesting for nanophotonic applications because of their waveguiding and field-focusing properties. Here, we developed a focused optical field induced solution synthesis for unique crystallized silver nano-needles. Under the focused laser spot, inhomogeneous Ag monomer concentration is created, which triggers the uniaxial growth of silver nanostructures along the radial direction with decreasing rate, forming nano-needle structures. These nano-needles are several micrometers long, with diameter attenuating from hundreds to tens of nanometers, and terminated by a sharp apex only a few nanometers in diameter. Moreover, nano-needles with atomically smooth surfaces show excellent performance for plasmonic waveguiding and unique near-field compression abilities. This nano-needle structure can be used for effective remote-excitation detection/sensing. We also demonstrate the assembling and picking up of nano-needles, which indicate potential applications in intracellular endoscopy, high resolution scanning tips, on-chip nanophotonic devices, etc.
| Original language | English |
|---|---|
| Pages (from-to) | 2153-2161 |
| Number of pages | 9 |
| Journal | Nanoscale |
| Volume | 11 |
| Issue number | 5 |
| DOIs | |
| State | Published - 7 Feb 2019 |
| Externally published | Yes |