TY - GEN
T1 - Sequential Multi-fusion Network for Multi-channel Video CTR Prediction
AU - Wang, Wen
AU - Zhang, Wei
AU - Feng, Wei
AU - Zha, Hongyuan
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - In this work, we study video click-through rate (CTR) prediction, crucial for the refinement of video recommendation and the revenue of video advertising. Existing studies have verified the importance of modeling users’ clicked items as their latent preference for general click-through rate prediction. However, all of the clicked ones are equally treated in the input stage, which is not the case in online video platforms. This is because each video is attributed to one of the multiple channels (e.g., TV and MOVIES), thus having different impacts on the prediction of candidate videos from a certain channel. To this end, we propose a novel Sequential Multi-Fusion Network (SMFN) by classifying all the channels into two categories: (1) target channel which current candidate videos belong to, and (2) context channel which includes all the left channels. For each category, SMFN leverages a recurrent neural network to model the corresponding clicked video sequence. The hidden interactions between the two categories are characterized by correlating each video of a sequence with the overall representation of another sequence through a simple but effective fusion unit. The experimental results on the real datasets collected from a commercial online video platform demonstrate the proposed model outperforms some strong alternative methods.
AB - In this work, we study video click-through rate (CTR) prediction, crucial for the refinement of video recommendation and the revenue of video advertising. Existing studies have verified the importance of modeling users’ clicked items as their latent preference for general click-through rate prediction. However, all of the clicked ones are equally treated in the input stage, which is not the case in online video platforms. This is because each video is attributed to one of the multiple channels (e.g., TV and MOVIES), thus having different impacts on the prediction of candidate videos from a certain channel. To this end, we propose a novel Sequential Multi-Fusion Network (SMFN) by classifying all the channels into two categories: (1) target channel which current candidate videos belong to, and (2) context channel which includes all the left channels. For each category, SMFN leverages a recurrent neural network to model the corresponding clicked video sequence. The hidden interactions between the two categories are characterized by correlating each video of a sequence with the overall representation of another sequence through a simple but effective fusion unit. The experimental results on the real datasets collected from a commercial online video platform demonstrate the proposed model outperforms some strong alternative methods.
KW - Click-through rate prediction
KW - Recurrent neural networks
KW - Sequential recommendation
UR - https://www.scopus.com/pages/publications/85092099956
U2 - 10.1007/978-3-030-59419-0_1
DO - 10.1007/978-3-030-59419-0_1
M3 - 会议稿件
AN - SCOPUS:85092099956
SN - 9783030594183
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 3
EP - 18
BT - Database Systems for Advanced Applications - 25th International Conference, DASFAA 2020, Proceedings
A2 - Nah, Yunmook
A2 - Cui, Bin
A2 - Lee, Sang-Won
A2 - Yu, Jeffrey Xu
A2 - Moon, Yang-Sae
A2 - Whang, Steven Euijong
PB - Springer Science and Business Media Deutschland GmbH
T2 - 25th International Conference on Database Systems for Advanced Applications, DASFAA 2020
Y2 - 24 September 2020 through 27 September 2020
ER -