Sense sentiment similarity: An analysis

Mitra Mohtarami, Hadi Amiri, Man Lan, Thanh Phu Tran, Chew Lim Tan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

This paper describes an emotion-based approach to acquire sentiment similarity of word pairs with respect to their senses. Sentiment similarity indicates the similarity between two words from their underlying sentiments. Our approach is built on a model which maps from senses of words to vectors of twelve basic emotions. The emotional vectors are used to measure the sentiment similarity of word pairs. We show the utility of measuring sentiment similarity in two main natural language processing tasks, namely, indirect yes/no question answer pairs (IQAP) Inference and sentiment orientation (SO) prediction. Extensive experiments demonstrate that our approach can effectively capture the sentiment similarity of word pairs and utilize this information to address the above mentioned tasks.

Original languageEnglish
Title of host publicationAAAI-12 / IAAI-12 - Proceedings of the 26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference
Pages1706-1712
Number of pages7
StatePublished - 2012
Externally publishedYes
Event26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference, AAAI-12 / IAAI-12 - Toronto, ON, Canada
Duration: 22 Jul 201226 Jul 2012

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume2

Conference

Conference26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference, AAAI-12 / IAAI-12
Country/TerritoryCanada
CityToronto, ON
Period22/07/1226/07/12

Fingerprint

Dive into the research topics of 'Sense sentiment similarity: An analysis'. Together they form a unique fingerprint.

Cite this