Self-supervised Exclusive Learning for 3D Segmentation with Cross-Modal Unsupervised Domain Adaptation

Yachao Zhang, Miaoyu Li, Yuan Xie, Cuihua Li, Cong Wang, Zhizhong Zhang, Yanyun Qu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

2D-3D unsupervised domain adaptation (UDA) tackles the lack of annotations in a new domain by capitalizing the relationship between 2D and 3D data. Existing methods achieve considerable improvements by performing cross-modality alignment in a modality-agnostic way, failing to exploit modality-specific characteristic for modeling complementarity. In this paper, we present self-supervised exclusive learning for cross-modal semantic segmentation under the UDA scenario, which avoids the prohibitive annotation. Specifically, two self-supervised tasks are designed, named "plane-to-spatial"and "discrete-to-textured". The former helps the 2D network branch improve the perception of spatial metrics, and the latter supplements structured texture information for the 3D network branch. In this way, modality-specific exclusive information can be effectively learned, and the complementarity of multi-modality is strengthened, resulting in a robust network to different domains. With the help of the self-supervised tasks supervision, we introduce a mixed domain to enhance the perception of the target domain by mixing the patches of the source and target domain samples. Besides, we propose a domain-category adversarial learning with category-wise discriminators by constructing the category prototypes for learning domain-invariant features. We evaluate our method on various multi-modality domain adaptation settings, where our results significantly outperform both uni-modality and multi-modality state-of-the-art competitors.

Original languageEnglish
Title of host publicationMM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages3338-3346
Number of pages9
ISBN (Electronic)9781450392037
DOIs
StatePublished - 10 Oct 2022
Event30th ACM International Conference on Multimedia, MM 2022 - Lisboa, Portugal
Duration: 10 Oct 202214 Oct 2022

Publication series

NameMM 2022 - Proceedings of the 30th ACM International Conference on Multimedia

Conference

Conference30th ACM International Conference on Multimedia, MM 2022
Country/TerritoryPortugal
CityLisboa
Period10/10/2214/10/22

Keywords

  • cross-modality
  • mixed domain
  • self-supervised exclusive learning
  • semantic segmentation
  • unsupervised domain adaptation

Fingerprint

Dive into the research topics of 'Self-supervised Exclusive Learning for 3D Segmentation with Cross-Modal Unsupervised Domain Adaptation'. Together they form a unique fingerprint.

Cite this