TY - GEN
T1 - SCLPD
T2 - 36th IEEE International Conference on Data Engineering, ICDE 2020
AU - Liu, Jiaye
AU - Mao, Jiali
AU - Liao, Jiajun
AU - Hu, Huiqi
AU - Guo, Ye
AU - Zhou, Aoying
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/4
Y1 - 2020/4
N2 - The rapid development of steel logistics industry still has not effectively address such issues as truck overload and order overdue as well as cargo overstock. One of the reasons lie in limited number of trucks for transporting large scale cargos. More importantly, traditional methods attend to distribute cargos to trucks with the aim of maximizing the loading of each truck. But they ignore the priority level of orders and the expiration date of cargos stored in the warehouses, which have critical influences on profits of steel logistics industry. Hence, it necessitates an appropriate cargo distribution mechanism under the precondition of limited transportation capacity resources, to guarantee the maximization of delivery proportion for high-priority cargos. Recently, tremendous logistics data has been produced and are being in constant increment hourly in steel logistics platform. However, there is no existing solution to transform such data into actionable scheme to improve cargo distributing effectiveness. This paper puts forward a system implementation of smart cargo loading plan decision framework (SCLPD for short) for steel logistics industry. Through analysis on numerous real data cargo loading plan and inventory of warehouse, some important rules related to cargo distribution process are extracted. Additionally, consider that different amounts of trucks arriving in different time periods, based on adaptive time window model, a two- layer searching mechanism consisting of a genetic algorithm and A∗ algorithm is designed to ensure global optimization of cargo loading plan for the trucks in all time periods. In our demonstration, we illustrate the procedure of matching for cargos and trucks in various time windows, and showcase the comparison experimental results between the traditional method and SCLPD by the measurement of delivery proportion for high- priority cargos. The effectiveness and practicality of SCLPD enables efficient cargo loading plan generation, to meet the real- world requirements from steel logistics platform.
AB - The rapid development of steel logistics industry still has not effectively address such issues as truck overload and order overdue as well as cargo overstock. One of the reasons lie in limited number of trucks for transporting large scale cargos. More importantly, traditional methods attend to distribute cargos to trucks with the aim of maximizing the loading of each truck. But they ignore the priority level of orders and the expiration date of cargos stored in the warehouses, which have critical influences on profits of steel logistics industry. Hence, it necessitates an appropriate cargo distribution mechanism under the precondition of limited transportation capacity resources, to guarantee the maximization of delivery proportion for high-priority cargos. Recently, tremendous logistics data has been produced and are being in constant increment hourly in steel logistics platform. However, there is no existing solution to transform such data into actionable scheme to improve cargo distributing effectiveness. This paper puts forward a system implementation of smart cargo loading plan decision framework (SCLPD for short) for steel logistics industry. Through analysis on numerous real data cargo loading plan and inventory of warehouse, some important rules related to cargo distribution process are extracted. Additionally, consider that different amounts of trucks arriving in different time periods, based on adaptive time window model, a two- layer searching mechanism consisting of a genetic algorithm and A∗ algorithm is designed to ensure global optimization of cargo loading plan for the trucks in all time periods. In our demonstration, we illustrate the procedure of matching for cargos and trucks in various time windows, and showcase the comparison experimental results between the traditional method and SCLPD by the measurement of delivery proportion for high- priority cargos. The effectiveness and practicality of SCLPD enables efficient cargo loading plan generation, to meet the real- world requirements from steel logistics platform.
KW - Cargo loading plan
KW - Dynamic time window
KW - Match
KW - Steel logistics
UR - https://www.scopus.com/pages/publications/85085864361
U2 - 10.1109/ICDE48307.2020.00163
DO - 10.1109/ICDE48307.2020.00163
M3 - 会议稿件
AN - SCOPUS:85085864361
T3 - Proceedings - International Conference on Data Engineering
SP - 1758
EP - 1761
BT - Proceedings - 2020 IEEE 36th International Conference on Data Engineering, ICDE 2020
PB - IEEE Computer Society
Y2 - 20 April 2020 through 24 April 2020
ER -