Scene Text Recognition with Temporal Convolutional Encoder

Xiangcheng Du, Tianlong Ma, Yingbin Zheng, Hao Ye, Xingjiao Wu, Liang He

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Texts from scene images typically consist of several characters and exhibit a characteristic sequence structure. Existing methods capture the structure with the sequence-to-sequence models by an encoder to have the visual representations and then a decoder to translate the features into the label sequence. In this paper, we study text recognition framework by considering the long-term temporal dependencies in the encoder stage. We demonstrate that the proposed Temporal Convolutional Encoder with increased sequential extents improves the accuracy of text recognition. We also study the impact of different attention modules in convolutional blocks for learning accurate text representations. We conduct comparisons on seven datasets and the experiments demonstrate the effectiveness of our proposed approach.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2383-2387
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Externally publishedYes
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: 4 May 20208 May 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period4/05/208/05/20

Keywords

  • Scene text recognition
  • sequence model
  • temporal convolutions

Fingerprint

Dive into the research topics of 'Scene Text Recognition with Temporal Convolutional Encoder'. Together they form a unique fingerprint.

Cite this