TY - JOUR
T1 - Satellite Imagery Recording the Process and Pattern of Winter Temperature Field in Yangtze Estuary Interrupted by a Cold Wave
AU - Chen, Ruirui
AU - Jiang, Xuezhong
AU - Chen, Jing
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/3
Y1 - 2023/3
N2 - Sea surface temperature (SST) is a key marine ecological metric. An optimized split-window algorithm was used to invert the Yangtze Estuary’s temperature field during a cold wave process. Additionally, MODIS SST inversion results were used to explore the effects of typical cold waves on the Yangtze Estuary’s temperature field through the application of a temperature profile analysis method and a multiscale, multidirectional edge detection algorithm. According to the findings, (1) the cold wave altered the temperature field characteristics and the temperature front intensity, morphology, and spatial distribution pattern within the Yangtze Estuary for a short period. The strong temperature front displayed irregular edges and scattered patterns due to the combined effects of cold water masses produced by the cold wave and the tides and the warm water currents outside the mouth. (2) The cold wave caused significant short-term deviations in the Yangtze Estuary’s SST. The cold water tongue stretched across the entire Yangtze Estuary, where the temperature dropped sharply with time, with the maximum cooling occurring outside the mouth, at 12.2 °C, and the minimum cooling occurring inside the mouth, at only 5.5 °C. (3) The spatially gradual warming of the Yangtze Estuary’s SST from inside to outside the mouth became a low–lower–high pattern during cold waves. (4) The cold wave exhibited a greater influence on the strength, form, and distribution of the temperature front. Studying the effects of cold waves on the Yangtze Estuary’s temperature field has significant theoretical and practical implications for understanding the changes in the winter temperature field, environmental protection, disaster mitigation, and prevention.
AB - Sea surface temperature (SST) is a key marine ecological metric. An optimized split-window algorithm was used to invert the Yangtze Estuary’s temperature field during a cold wave process. Additionally, MODIS SST inversion results were used to explore the effects of typical cold waves on the Yangtze Estuary’s temperature field through the application of a temperature profile analysis method and a multiscale, multidirectional edge detection algorithm. According to the findings, (1) the cold wave altered the temperature field characteristics and the temperature front intensity, morphology, and spatial distribution pattern within the Yangtze Estuary for a short period. The strong temperature front displayed irregular edges and scattered patterns due to the combined effects of cold water masses produced by the cold wave and the tides and the warm water currents outside the mouth. (2) The cold wave caused significant short-term deviations in the Yangtze Estuary’s SST. The cold water tongue stretched across the entire Yangtze Estuary, where the temperature dropped sharply with time, with the maximum cooling occurring outside the mouth, at 12.2 °C, and the minimum cooling occurring inside the mouth, at only 5.5 °C. (3) The spatially gradual warming of the Yangtze Estuary’s SST from inside to outside the mouth became a low–lower–high pattern during cold waves. (4) The cold wave exhibited a greater influence on the strength, form, and distribution of the temperature front. Studying the effects of cold waves on the Yangtze Estuary’s temperature field has significant theoretical and practical implications for understanding the changes in the winter temperature field, environmental protection, disaster mitigation, and prevention.
KW - MODIS
KW - Yangtze Estuary
KW - cold wave
KW - sea surface temperature
KW - split-window algorithm
UR - https://www.scopus.com/pages/publications/85151341786
U2 - 10.3390/atmos14030479
DO - 10.3390/atmos14030479
M3 - 文章
AN - SCOPUS:85151341786
SN - 1598-3560
VL - 14
JO - Atmosphere
JF - Atmosphere
IS - 3
M1 - 479
ER -