TY - GEN
T1 - Routing questions to the right users in online communities
AU - Zhou, Yanhong
AU - Cong, Gao
AU - Cui, Bin
AU - Jensen, Christian S.
AU - Yao, Junjie
PY - 2009
Y1 - 2009
N2 - Online forums contain huge amounts of valuable user-generated content. In current forum systems, users have to passively wait for other users to visit the forum systems and read/answer their questions. The user experience for question answering suffers from this arrangement. In this paper, we address the problem of "pushing" the right questions to the rightpersons, the objective being to obtain quick, high-quality answers, thus improving user satisfaction. We propose a framework for the efficient and effective routing of a given question to the top-k potential experts (users) in a forum, by utilizing both the content and structures of the forum system. First, we compute the expertise of users according to the content of the forum system-this is to estimate the probability of a user being an expert for a given question based on the previous question answering of the user. Specifically, we design three models for this task, including a profile-based model, a thread-based model, and a clusterbased model. Second, we re-rank the user expertise measured in probability by utilizing the structural relations among users in a forum system. The results of the two steps can be integrated naturally in a probabilistic model that computes a final ranking score for each user. Experimental results show that the proposals are very promising.
AB - Online forums contain huge amounts of valuable user-generated content. In current forum systems, users have to passively wait for other users to visit the forum systems and read/answer their questions. The user experience for question answering suffers from this arrangement. In this paper, we address the problem of "pushing" the right questions to the rightpersons, the objective being to obtain quick, high-quality answers, thus improving user satisfaction. We propose a framework for the efficient and effective routing of a given question to the top-k potential experts (users) in a forum, by utilizing both the content and structures of the forum system. First, we compute the expertise of users according to the content of the forum system-this is to estimate the probability of a user being an expert for a given question based on the previous question answering of the user. Specifically, we design three models for this task, including a profile-based model, a thread-based model, and a clusterbased model. Second, we re-rank the user expertise measured in probability by utilizing the structural relations among users in a forum system. The results of the two steps can be integrated naturally in a probabilistic model that computes a final ranking score for each user. Experimental results show that the proposals are very promising.
UR - https://www.scopus.com/pages/publications/67649700386
U2 - 10.1109/ICDE.2009.44
DO - 10.1109/ICDE.2009.44
M3 - 会议稿件
AN - SCOPUS:67649700386
SN - 9780769535456
T3 - Proceedings - International Conference on Data Engineering
SP - 700
EP - 711
BT - Proceedings - 25th IEEE International Conference on Data Engineering, ICDE 2009
T2 - 25th IEEE International Conference on Data Engineering, ICDE 2009
Y2 - 29 March 2009 through 2 April 2009
ER -