TY - JOUR
T1 - Robust fuzzy local information and Lp-norm distance-based image segmentation method
AU - Li, Fang
AU - Qin, Jing
N1 - Publisher Copyright:
© The Institution of Engineering and Technology.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - A variant of fuzzy c-means (FCM) clustering algorithm for image segmentation is provided. Unlike the L2-norm distance in FCM, Lp with p ∈ (0,1] norm is used to measure the distance of the pixel intensity to its cluster centre in the energy functional. Moreover, local spatial information and colour information are incorporated into the model to enhance the robustness to noise and outliers. The proposed algorithm is called fuzzy local information Lp (FLILp) clustering. To overcome the difficulty of finding cluster centres, Lp-norm distance is approximated by weighted L2 distance. The advantages of FLILp are: (i) it is strongly robust to noise and outliers, (ii) it is applied to the original image and (iii) it preserves image edges. Numerical examples and comparisons of image segmentation on both synthetic and real images illustrate the outstanding performance and robustness of the proposed method.
AB - A variant of fuzzy c-means (FCM) clustering algorithm for image segmentation is provided. Unlike the L2-norm distance in FCM, Lp with p ∈ (0,1] norm is used to measure the distance of the pixel intensity to its cluster centre in the energy functional. Moreover, local spatial information and colour information are incorporated into the model to enhance the robustness to noise and outliers. The proposed algorithm is called fuzzy local information Lp (FLILp) clustering. To overcome the difficulty of finding cluster centres, Lp-norm distance is approximated by weighted L2 distance. The advantages of FLILp are: (i) it is strongly robust to noise and outliers, (ii) it is applied to the original image and (iii) it preserves image edges. Numerical examples and comparisons of image segmentation on both synthetic and real images illustrate the outstanding performance and robustness of the proposed method.
UR - https://www.scopus.com/pages/publications/85016489630
U2 - 10.1049/iet-ipr.2016.0539
DO - 10.1049/iet-ipr.2016.0539
M3 - 文章
AN - SCOPUS:85016489630
SN - 1751-9659
VL - 11
SP - 217
EP - 226
JO - IET Image Processing
JF - IET Image Processing
IS - 4
ER -