Rewiring What-to-Watch-Next Recommendations to Reduce Radicalization Pathways (Extended Abstract)

Francesco Fabbri, Yanhao Wang, Francesco Bonchi, Carlos Castillo, Michael Mathioudakis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recommender systems typically suggest to users content similar to what they consumed in the past. A user, if happening to be exposed to strongly polarized content, might be steered towards more and more radicalized content by subsequent recommendations, eventually being trapped in what we call a “radicalization pathway”. In this paper, we investigate how to mitigate radicalization pathways using a graph-based approach. We model the set of recommendations in a “what-to-watch-next” (W2W) recommender as a directed graph, where nodes correspond to content items, links to recommendations, and paths to possible user sessions. We measure the segregation score of a node representing radicalized content as the expected length of a random walk from that node to any node representing non-radicalized content. A high segregation score thus implies a larger chance of getting users trapped in radicalization pathways. We aim to reduce the prevalence of radicalization pathways by selecting a small number of edges to “rewire”, so as to minimize the maximum of segregation scores among all radicalized nodes while maintaining the relevance of recommendations. We propose an efficient yet effective greedy heuristic based on the absorbing random walk theory for the rewiring problem. Our experiments on real-world datasets confirm the effectiveness of our proposal.

Original languageEnglish
Title of host publicationProceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
EditorsEdith Elkind
PublisherInternational Joint Conferences on Artificial Intelligence
Pages6431-6435
Number of pages5
ISBN (Electronic)9781956792034
DOIs
StatePublished - 2023
Event32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 - Macao, China
Duration: 19 Aug 202325 Aug 2023

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2023-August
ISSN (Print)1045-0823

Conference

Conference32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
Country/TerritoryChina
CityMacao
Period19/08/2325/08/23

Fingerprint

Dive into the research topics of 'Rewiring What-to-Watch-Next Recommendations to Reduce Radicalization Pathways (Extended Abstract)'. Together they form a unique fingerprint.

Cite this