TY - GEN
T1 - Rewiring What-to-Watch-Next Recommendations to Reduce Radicalization Pathways (Extended Abstract)
AU - Fabbri, Francesco
AU - Wang, Yanhao
AU - Bonchi, Francesco
AU - Castillo, Carlos
AU - Mathioudakis, Michael
N1 - Publisher Copyright:
© 2023 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Recommender systems typically suggest to users content similar to what they consumed in the past. A user, if happening to be exposed to strongly polarized content, might be steered towards more and more radicalized content by subsequent recommendations, eventually being trapped in what we call a “radicalization pathway”. In this paper, we investigate how to mitigate radicalization pathways using a graph-based approach. We model the set of recommendations in a “what-to-watch-next” (W2W) recommender as a directed graph, where nodes correspond to content items, links to recommendations, and paths to possible user sessions. We measure the segregation score of a node representing radicalized content as the expected length of a random walk from that node to any node representing non-radicalized content. A high segregation score thus implies a larger chance of getting users trapped in radicalization pathways. We aim to reduce the prevalence of radicalization pathways by selecting a small number of edges to “rewire”, so as to minimize the maximum of segregation scores among all radicalized nodes while maintaining the relevance of recommendations. We propose an efficient yet effective greedy heuristic based on the absorbing random walk theory for the rewiring problem. Our experiments on real-world datasets confirm the effectiveness of our proposal.
AB - Recommender systems typically suggest to users content similar to what they consumed in the past. A user, if happening to be exposed to strongly polarized content, might be steered towards more and more radicalized content by subsequent recommendations, eventually being trapped in what we call a “radicalization pathway”. In this paper, we investigate how to mitigate radicalization pathways using a graph-based approach. We model the set of recommendations in a “what-to-watch-next” (W2W) recommender as a directed graph, where nodes correspond to content items, links to recommendations, and paths to possible user sessions. We measure the segregation score of a node representing radicalized content as the expected length of a random walk from that node to any node representing non-radicalized content. A high segregation score thus implies a larger chance of getting users trapped in radicalization pathways. We aim to reduce the prevalence of radicalization pathways by selecting a small number of edges to “rewire”, so as to minimize the maximum of segregation scores among all radicalized nodes while maintaining the relevance of recommendations. We propose an efficient yet effective greedy heuristic based on the absorbing random walk theory for the rewiring problem. Our experiments on real-world datasets confirm the effectiveness of our proposal.
UR - https://www.scopus.com/pages/publications/85170373243
U2 - 10.24963/ijcai.2023/715
DO - 10.24963/ijcai.2023/715
M3 - 会议稿件
AN - SCOPUS:85170373243
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 6431
EP - 6435
BT - Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
A2 - Elkind, Edith
PB - International Joint Conferences on Artificial Intelligence
T2 - 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
Y2 - 19 August 2023 through 25 August 2023
ER -