Review comment analysis for predicting ratings

Rong Zhang, Yifan Gao, Wenzhe Yu, Pingfu Chao, Xiaoyan Yang, Ming Gao, Aoying Zhou

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

Rating prediction is a common task in recommendation systems that aims to predict a rating representing the opinion from a user to an item. In this paper, we propose a comment-based collaborative filtering (CCF) approach that captures correlations between hidden aspects in review comments and numeric ratings. The idea is motivated by the observation that the opinion of a user against an item is represented by different aspects discussed in review comments. In our approach, we first explores topic modeling to discover hidden aspects from review comments. Profiles are then created for users and items separately based on the discovered aspects. In the testing stage, we estimate the aspects of comments based on the profiles of users and items because the comments are not available when testing. Lastly, we build final systems by utilizing the profiles and traditional collaborative filtering methods. We evaluate the proposed approach on a real data set. The experimental results show that our prediction systems outperform several strong baseline systems.

Original languageEnglish
Title of host publicationWeb-Age Information Management - 16th International Conference, WAIM 2015, Proceedings
EditorsYizhou Sun, Jian Li
PublisherSpringer Verlag
Pages247-259
Number of pages13
ISBN (Electronic)9783319210414
DOIs
StatePublished - 2015
Event16th International Conference on Web-Age Information Management, WAIM 2015 - Qingdao, China
Duration: 8 Jun 201510 Jun 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9098
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th International Conference on Web-Age Information Management, WAIM 2015
Country/TerritoryChina
CityQingdao
Period8/06/1510/06/15

Fingerprint

Dive into the research topics of 'Review comment analysis for predicting ratings'. Together they form a unique fingerprint.

Cite this