TY - GEN
T1 - Rethinking Efficient Lane Detection via Curve Modeling
AU - Feng, Zhengyang
AU - Guo, Shaohua
AU - Tan, Xin
AU - Xu, Ke
AU - Wang, Min
AU - Ma, Lizhuang
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - This paper presents a novel parametric curve-based method for lane detection in RGB images. Unlike state-of-the-art segmentation-based and point detection-based methods that typically require heuristics to either decode predictions or formulate a large sum of anchors, the curve-based methods can learn holistic lane representations naturally. To handle the optimization difficulties of existing poly-nomial curve methods, we propose to exploit the parametric Bézier curve due to its ease of computation, stability, and high freedom degrees of transformations. In addition, we propose the deformable convolution-based feature flip fusion, for exploiting the symmetry properties of lanes in driving scenes. The proposed method achieves a new state-of-the-art performance on the popular LLAMAS benchmark. It also achieves favorable accuracy on the TuSimple and CULane datasets, while retaining both low latency (>150 FPS) and small model size (<10M). Our method can serve as a new baseline, to shed the light on the parametric curves modeling for lane detection. Codes of our model and PytorchAutoDrive: a unified framework for self-driving perception, are available at: https://github.com/voldemortX/pytorch-auto-drive.
AB - This paper presents a novel parametric curve-based method for lane detection in RGB images. Unlike state-of-the-art segmentation-based and point detection-based methods that typically require heuristics to either decode predictions or formulate a large sum of anchors, the curve-based methods can learn holistic lane representations naturally. To handle the optimization difficulties of existing poly-nomial curve methods, we propose to exploit the parametric Bézier curve due to its ease of computation, stability, and high freedom degrees of transformations. In addition, we propose the deformable convolution-based feature flip fusion, for exploiting the symmetry properties of lanes in driving scenes. The proposed method achieves a new state-of-the-art performance on the popular LLAMAS benchmark. It also achieves favorable accuracy on the TuSimple and CULane datasets, while retaining both low latency (>150 FPS) and small model size (<10M). Our method can serve as a new baseline, to shed the light on the parametric curves modeling for lane detection. Codes of our model and PytorchAutoDrive: a unified framework for self-driving perception, are available at: https://github.com/voldemortX/pytorch-auto-drive.
KW - Navigation and autonomous driving
KW - Scene analysis and understanding
UR - https://www.scopus.com/pages/publications/85138576931
U2 - 10.1109/CVPR52688.2022.01655
DO - 10.1109/CVPR52688.2022.01655
M3 - 会议稿件
AN - SCOPUS:85138576931
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 17041
EP - 17049
BT - Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PB - IEEE Computer Society
T2 - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Y2 - 19 June 2022 through 24 June 2022
ER -