TY - JOUR
T1 - Removal of microplastics from aqueous solutions by magnetic carbon nanotubes
AU - Tang, Ye
AU - Zhang, Suhua
AU - Su, Yinglong
AU - Wu, Dong
AU - Zhao, Yaping
AU - Xie, Bing
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/2/15
Y1 - 2021/2/15
N2 - Microplastics (MPs), as reservoirs of cocktail of contaminants, impose severe impacts on human and ambient water environment. Therefore, efficient and eco-friendly MPs removal techniques are urgently needed. In this study, for the first time, magnetic carbon nanotubes (M−CNTs) have been synthesized as adsorbates to remove MPs. M−CNTs were effectively adsorbed on polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA) and all the MPs/M−CNTs composites were readily separated from aqueous solutions by magnetic force. When the 5 g⋅L−1 of M−CNTs was added, target MPs (5 g⋅L−1) were completely removed within 300 min. The maximum adsorption capacities of PE, PET and PA were 1650, 1400 and 1100 mg-M−CNTs⋅g−1, respectively. This process was hardly affected by the COD, NH3-N, and PO43− substance and all MPs were completely removed from the wastewater discharged from a kitchen waste treatment plant. Furthermore, the adsorbed M−CNTs can be recycled via thermal treatment (600 °C) and these M−CNTs were featured with the same magnetic properties and comparable MPs removal capacity to the original ones. After being used for four times, M−CNTs were still able to remove ~80% of total MPs in the testing solution. The observed effectual removal of MPs from prepared solutions and wastewater highlights M−CNTs as promising techniques for the control of MPs pollution.
AB - Microplastics (MPs), as reservoirs of cocktail of contaminants, impose severe impacts on human and ambient water environment. Therefore, efficient and eco-friendly MPs removal techniques are urgently needed. In this study, for the first time, magnetic carbon nanotubes (M−CNTs) have been synthesized as adsorbates to remove MPs. M−CNTs were effectively adsorbed on polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA) and all the MPs/M−CNTs composites were readily separated from aqueous solutions by magnetic force. When the 5 g⋅L−1 of M−CNTs was added, target MPs (5 g⋅L−1) were completely removed within 300 min. The maximum adsorption capacities of PE, PET and PA were 1650, 1400 and 1100 mg-M−CNTs⋅g−1, respectively. This process was hardly affected by the COD, NH3-N, and PO43− substance and all MPs were completely removed from the wastewater discharged from a kitchen waste treatment plant. Furthermore, the adsorbed M−CNTs can be recycled via thermal treatment (600 °C) and these M−CNTs were featured with the same magnetic properties and comparable MPs removal capacity to the original ones. After being used for four times, M−CNTs were still able to remove ~80% of total MPs in the testing solution. The observed effectual removal of MPs from prepared solutions and wastewater highlights M−CNTs as promising techniques for the control of MPs pollution.
KW - Heat treatment
KW - Magnetic carbon nanotubes
KW - Microplastics
KW - Recovery
UR - https://www.scopus.com/pages/publications/85090050136
U2 - 10.1016/j.cej.2020.126804
DO - 10.1016/j.cej.2020.126804
M3 - 文章
AN - SCOPUS:85090050136
SN - 1385-8947
VL - 406
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 126804
ER -