TY - GEN
T1 - RecursiveDet
T2 - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
AU - Zhao, Jing
AU - Sun, Li
AU - Li, Qingli
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - End-to-end region-based object detectors like Sparse R-CNN usually have multiple cascade bounding box decoding stages, which refine the current predictions according to their previous results. Model parameters within each stage are independent, evolving a huge cost. In this paper, we find the general setting of decoding stages is actually redundant. By simply sharing parameters and making a recursive decoder, the detector already obtains a significant improvement. The recursive decoder can be further enhanced by positional encoding (PE) of the proposal box, which makes it aware of the exact locations and sizes of input bounding boxes, thus becoming adaptive to proposals from different stages during the recursion. Moreover, we also design centerness-based PE to distinguish the RoI feature element and dynamic convolution kernels at different positions within the bounding box. To validate the effectiveness of the proposed method, we conduct intensive ablations and build the full model on three recent mainstream region-based detectors. The RecusiveDet is able to achieve obvious performance boosts with even fewer model parameters and slightly increased computation cost. Codes are available at https://github.com/bravezzzzzz/RecursiveDet.
AB - End-to-end region-based object detectors like Sparse R-CNN usually have multiple cascade bounding box decoding stages, which refine the current predictions according to their previous results. Model parameters within each stage are independent, evolving a huge cost. In this paper, we find the general setting of decoding stages is actually redundant. By simply sharing parameters and making a recursive decoder, the detector already obtains a significant improvement. The recursive decoder can be further enhanced by positional encoding (PE) of the proposal box, which makes it aware of the exact locations and sizes of input bounding boxes, thus becoming adaptive to proposals from different stages during the recursion. Moreover, we also design centerness-based PE to distinguish the RoI feature element and dynamic convolution kernels at different positions within the bounding box. To validate the effectiveness of the proposed method, we conduct intensive ablations and build the full model on three recent mainstream region-based detectors. The RecusiveDet is able to achieve obvious performance boosts with even fewer model parameters and slightly increased computation cost. Codes are available at https://github.com/bravezzzzzz/RecursiveDet.
UR - https://www.scopus.com/pages/publications/85185871339
U2 - 10.1109/ICCV51070.2023.00580
DO - 10.1109/ICCV51070.2023.00580
M3 - 会议稿件
AN - SCOPUS:85185871339
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 6284
EP - 6293
BT - Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 2 October 2023 through 6 October 2023
ER -