Recognition of Action Units in the Wild with Deep Nets and a New Global-Local Loss

C. Fabian Benitez-Quiroz, Yan Wang, Aleix M. Martinez

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

48 Scopus citations

Abstract

Most previous algorithms for the recognition of Action Units (AUs) were trained on a small number of sample images. This was due to the limited amount of labeled data available at the time. This meant that data-hungry deep neural networks, which have shown their potential in other computer vision problems, could not be successfully trained to detect AUs. A recent publicly available database with close to a million labeled images has made this training possible. Image and individual variability (e.g., pose, scale, illumination, ethnicity) in this set is very large. Unfortunately, the labels in this dataset are not perfect (i.e., they are noisy), making convergence of deep nets difficult. To harness the richness of this dataset while being robust to the inaccuracies of the labels, we derive a novel global-local loss. This new loss function is shown to yield fast globally meaningful convergences and locally accurate results. Comparative results with those of the EmotioNet challenge demonstrate that our newly derived loss yields superior recognition of AUs than state-of-the-art algorithms.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3990-3999
Number of pages10
ISBN (Electronic)9781538610329
DOIs
StatePublished - 22 Dec 2017
Externally publishedYes
Event16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy
Duration: 22 Oct 201729 Oct 2017

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2017-October
ISSN (Print)1550-5499

Conference

Conference16th IEEE International Conference on Computer Vision, ICCV 2017
Country/TerritoryItaly
CityVenice
Period22/10/1729/10/17

Fingerprint

Dive into the research topics of 'Recognition of Action Units in the Wild with Deep Nets and a New Global-Local Loss'. Together they form a unique fingerprint.

Cite this