RecBole: Towards a Unified, Comprehensive and Efficient Framework for Recommendation Algorithms

Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan, Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, Yingqian Min, Zhichao Feng, Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang, Ji Rong Wen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

401 Scopus citations

Abstract

In recent years, there are a large number of recommendation algorithms proposed in the literature, from traditional collaborative filtering to deep learning algorithms. However, the concerns about how to standardize open source implementation of recommendation algorithms continually increase in the research community. In the light of this challenge, we propose a unified, comprehensive and efficient recommender system library called RecBole (pronounced as [rEk'boUl@r]), which provides a unified framework to develop and reproduce recommendation algorithms for research purpose. In this library, we implement 73 recommendation models on 28 benchmark datasets, covering the categories of general recommendation, sequential recommendation, context-aware recommendation and knowledge-based recommendation. We implement the RecBole library based on PyTorch, which is one of the most popular deep learning frameworks. Our library is featured in many aspects, including general and extensible data structures, comprehensive benchmark models and datasets, efficient GPU-accelerated execution, and extensive and standard evaluation protocols. We provide a series of auxiliary functions, tools, and scripts to facilitate the use of this library, such as automatic parameter tuning and break-point resume. Such a framework is useful to standardize the implementation and evaluation of recommender systems. The project and documents are released at https://recbole.io/.

Original languageEnglish
Title of host publicationCIKM 2021 - Proceedings of the 30th ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages4653-4664
Number of pages12
ISBN (Electronic)9781450384469
DOIs
StatePublished - 30 Oct 2021
Event30th ACM International Conference on Information and Knowledge Management, CIKM 2021 - Virtual, Online, Australia
Duration: 1 Nov 20215 Nov 2021

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings
ISSN (Print)2155-0751

Conference

Conference30th ACM International Conference on Information and Knowledge Management, CIKM 2021
Country/TerritoryAustralia
CityVirtual, Online
Period1/11/215/11/21

Keywords

  • collaborative filtering
  • recommender system
  • toolkit

Fingerprint

Dive into the research topics of 'RecBole: Towards a Unified, Comprehensive and Efficient Framework for Recommendation Algorithms'. Together they form a unique fingerprint.

Cite this