TY - JOUR
T1 - Real embedding and equivariant eta forms
AU - Liu, Bo
N1 - Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/8/1
Y1 - 2019/8/1
N2 - Bismut and Zhang (Math Ann 295(4):661–684, 1993) establish a modZ embedding formula of Atiyah–Patodi–Singer reduced eta invariants. In this paper, we explain the hidden modZ term as a spectral flow and extend this embedding formula to the equivariant family case. In this case, the spectral flow is generalized to the equivariant Chern character of some equivariant Dai–Zhang higher spectral flow.
AB - Bismut and Zhang (Math Ann 295(4):661–684, 1993) establish a modZ embedding formula of Atiyah–Patodi–Singer reduced eta invariants. In this paper, we explain the hidden modZ term as a spectral flow and extend this embedding formula to the equivariant family case. In this case, the spectral flow is generalized to the equivariant Chern character of some equivariant Dai–Zhang higher spectral flow.
KW - Direct image
KW - Equivariant eta form
KW - Higher spectral flow
KW - Index theory and fixed point theory
UR - https://www.scopus.com/pages/publications/85051652823
U2 - 10.1007/s00209-018-2119-9
DO - 10.1007/s00209-018-2119-9
M3 - 文章
AN - SCOPUS:85051652823
SN - 0025-5874
VL - 292
SP - 849
EP - 878
JO - Mathematische Zeitschrift
JF - Mathematische Zeitschrift
IS - 3-4
ER -