Real embedding and equivariant eta forms

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Bismut and Zhang (Math Ann 295(4):661–684, 1993) establish a modZ embedding formula of Atiyah–Patodi–Singer reduced eta invariants. In this paper, we explain the hidden modZ term as a spectral flow and extend this embedding formula to the equivariant family case. In this case, the spectral flow is generalized to the equivariant Chern character of some equivariant Dai–Zhang higher spectral flow.

Original languageEnglish
Pages (from-to)849-878
Number of pages30
JournalMathematische Zeitschrift
Volume292
Issue number3-4
DOIs
StatePublished - 1 Aug 2019

Keywords

  • Direct image
  • Equivariant eta form
  • Higher spectral flow
  • Index theory and fixed point theory

Fingerprint

Dive into the research topics of 'Real embedding and equivariant eta forms'. Together they form a unique fingerprint.

Cite this