RBF neural network supported classification of remote sensing images based on TM/ETM+ in Nanjing

Kai Cao, Bo Huang, Lu Heng, Biao Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The classification of remote sensing images is more and more important along with the development of society and economy. According to the defects general classification methods have, such as the accuracy, the efficiency etc, the design of 'robust' classification system based on a Gaussian RBF neural Network is used in this article to classify the TM/ETM+ image in Nanjing. The choice of this neural network model is justified by some of its particular properties, i.e., local learning, fast training phase, ability to recognize when an input pattern has fallen into a region of the input space without training data, and capability to provide high classification accuracies on remote sensing images. For appraising the precision of the model in brief, over 1000 examples are chosen in this research, and the result shows that in the whole research area there is obvious improvement (86.6- 89.7%) between MLC and this model. Besides, it is also better than the MLP NN model (87.9-89.7%). The result indicates that the model of RBF NN is a good approach for the classification of remote sensing in this area based on TM/ETM+. Of course, there are also many aspects need to be revised and improved in the future research such as the accuracy and for other data source.

Original languageEnglish
Title of host publication2008 IEEE International Geoscience and Remote Sensing Symposium - Proceedings
PagesIV750-IV753
Edition1
DOIs
StatePublished - 2008
Externally publishedYes
Event2008 IEEE International Geoscience and Remote Sensing Symposium - Proceedings - Boston, MA, United States
Duration: 6 Jul 200811 Jul 2008

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Number1
Volume4

Conference

Conference2008 IEEE International Geoscience and Remote Sensing Symposium - Proceedings
Country/TerritoryUnited States
CityBoston, MA
Period6/07/0811/07/08

Keywords

  • BPMLP
  • MLC
  • Nanjing
  • RBF Neural Network
  • TM/ETM+

Fingerprint

Dive into the research topics of 'RBF neural network supported classification of remote sensing images based on TM/ETM+ in Nanjing'. Together they form a unique fingerprint.

Cite this