TY - JOUR
T1 - Ratiometric electrochemical sensor for selective monitoring of cadmium ions using biomolecular recognition
AU - Chai, Xiaolan
AU - Zhang, Limin
AU - Tian, Yang
N1 - Publisher Copyright:
© 2014 American Chemical Society.
PY - 2014/10/1
Y1 - 2014/10/1
N2 - A selective, accurate, and sensitive method for monitoring of cadmium ions (Cd2+) based on a ratiometric electrochemical sensor was developed, by simultaneously modifying with protoporphyrin IX and 6-(ferroceney) hexanethiol (FcHT) on Au particle-deposited glassy carbon electrode. On the basis of high affinity of biomolecular recognition between protoporphyrin IX and Cd2+, the functionalized electrode showed high selectivity toward Cd2+ over other metal ions such as Cu2+, Fe3+, Ca2+, and so on. Electroactive FcHT played the role as the inner reference element to provide a built-in correction, thus improving the accuracy for determination of Cd2+ in the complicated environments. The sensitivity of the electrochemical sensor for Cd2+ was enhanced by ∼3-fold through the signal amplification of electrodeposited gold nanoparticles. Accordingly, the present ratiometric method demonstrated high sensitivity, broad linear range from 100 nM to 10 μM, and low detection limit down to 10 nM (2.2 ppb), lower than EPA and WHO guidelines. Finally, the ratiometric electrochemical sensor was successfully applied in the determination of Cd2+ in water samples, and the obtained results agreed well with those obtained by the conventional ICP-MS method.
AB - A selective, accurate, and sensitive method for monitoring of cadmium ions (Cd2+) based on a ratiometric electrochemical sensor was developed, by simultaneously modifying with protoporphyrin IX and 6-(ferroceney) hexanethiol (FcHT) on Au particle-deposited glassy carbon electrode. On the basis of high affinity of biomolecular recognition between protoporphyrin IX and Cd2+, the functionalized electrode showed high selectivity toward Cd2+ over other metal ions such as Cu2+, Fe3+, Ca2+, and so on. Electroactive FcHT played the role as the inner reference element to provide a built-in correction, thus improving the accuracy for determination of Cd2+ in the complicated environments. The sensitivity of the electrochemical sensor for Cd2+ was enhanced by ∼3-fold through the signal amplification of electrodeposited gold nanoparticles. Accordingly, the present ratiometric method demonstrated high sensitivity, broad linear range from 100 nM to 10 μM, and low detection limit down to 10 nM (2.2 ppb), lower than EPA and WHO guidelines. Finally, the ratiometric electrochemical sensor was successfully applied in the determination of Cd2+ in water samples, and the obtained results agreed well with those obtained by the conventional ICP-MS method.
UR - https://www.scopus.com/pages/publications/84908577190
U2 - 10.1021/ac502521f
DO - 10.1021/ac502521f
M3 - 文章
C2 - 25272162
AN - SCOPUS:84908577190
SN - 0003-2700
VL - 86
SP - 10668
EP - 10673
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 21
ER -