TY - JOUR
T1 - Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation
AU - Lou, Xiao Yi
AU - Guo, Yao Guang
AU - Xiao, Dong Xue
AU - Wang, Zhao Hui
AU - Lu, Shu Yu
AU - Liu, Jian She
PY - 2013/9
Y1 - 2013/9
N2 - Transition-metal is known to catalyze peroxymonosulfate (PMS) decomposition to produce sulfate radicals. Here we report reactions between PMS and chloride, without a need of transition metals, also can be used to degrade organic dye pollutant (Rhodamine B, (RhB)). Some important operating parameters, such as dosages of PMS and Cl-, pH of solution, temperature, ionic strength, and several common cations, were systematically investigated. Almost complete decoloration of RhB was achieved within 5 min ([PMS] = 0.5 mM, [Cl-] = 120 mM, and pH 3.0), and RhB bleaching rate increased with the increased dosages of both PMS and chloride ion, following the pseudo-first-order kinetic model. However, the total organic carbon (TOC) removal results demonstrated that the decoloration of RhB was due to the destruction of chromophore rather than complete degradation. RhB decoloration could be significantly accelerated due to the high ionic strength. Increasing of the reaction temperature from 273 K to 333 K was beneficial to the RhB degradation, and the activation energy was determined to be 32.996 kJ/mol. Bleaching rate of RhB with the examined cations increased with the order of NH4 + < Na+ < K+ < Al3+ < Ca2+ < Mg2+. Some major degradation products of RhB were identified by GC-MS. The present study may have active technical implications for the treatment of dyestuff wastewater in practice.
AB - Transition-metal is known to catalyze peroxymonosulfate (PMS) decomposition to produce sulfate radicals. Here we report reactions between PMS and chloride, without a need of transition metals, also can be used to degrade organic dye pollutant (Rhodamine B, (RhB)). Some important operating parameters, such as dosages of PMS and Cl-, pH of solution, temperature, ionic strength, and several common cations, were systematically investigated. Almost complete decoloration of RhB was achieved within 5 min ([PMS] = 0.5 mM, [Cl-] = 120 mM, and pH 3.0), and RhB bleaching rate increased with the increased dosages of both PMS and chloride ion, following the pseudo-first-order kinetic model. However, the total organic carbon (TOC) removal results demonstrated that the decoloration of RhB was due to the destruction of chromophore rather than complete degradation. RhB decoloration could be significantly accelerated due to the high ionic strength. Increasing of the reaction temperature from 273 K to 333 K was beneficial to the RhB degradation, and the activation energy was determined to be 32.996 kJ/mol. Bleaching rate of RhB with the examined cations increased with the order of NH4 + < Na+ < K+ < Al3+ < Ca2+ < Mg2+. Some major degradation products of RhB were identified by GC-MS. The present study may have active technical implications for the treatment of dyestuff wastewater in practice.
KW - Activation energy
KW - Cations
KW - Ionic strength
KW - Stoichiometric reaction
KW - System parameters
UR - https://www.scopus.com/pages/publications/84880836559
U2 - 10.1007/s11356-013-1678-x
DO - 10.1007/s11356-013-1678-x
M3 - 文章
AN - SCOPUS:84880836559
SN - 0944-1344
VL - 20
SP - 6317
EP - 6323
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 9
ER -